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A B S T R A C T

Process-based crop simulation models are often over-parameterised and are therefore difficult to calibrate
properly. Following this rationale, the Morris screening sensitivity method was carried out on the DAISY model
to identify the most influential input parameters operating on selected model outputs, i.e. crop yield, grain
nitrogen (N), evapotranspiration and N leaching. The results obtained refer to the winter wheat-summer maize
cropping system in the North China Plain. In this study, four different N fertiliser treatments over six years were
considered based on a randomised field experiment at Luancheng Experimental Station to elucidate the impact
of weather and nitrogen inputs on model sensitivity. A total of 128 parameters were considered for the sensi-
tivity analysis. The ratios [output changes/parameter increments] demonstrated high standard deviations for the
most relevant parameters, indicating high parameter non-linearity/interactions. In general, about 34 parameters
influenced the outputs of the DAISY model for both crops. The most influential parameters depended on the
output considered with sensitivity patterns consistent with the expected dominant processes. Interestingly, some
parameters related to the previous crop were found to affect output variables of the following crop, illustrating
the importance of considering crop sequences for model calibration. The developed RDAISY toolbox used in this
study can serve as a basis for following sensitivity analysis of the DAISY model, thus enabling the selection of the
most influential parameters to be considered with model calibration.

1. Introduction

Process-based models have been extensively used to assess how the
interaction ofgenotype× environment×management may affect crop
productivity and dynamics of hydrology and nitrogen (N) in cropping
systems (Chapman, 2008). Simulation models are also considered es-
sential tools for scenario analyses and decision support for policy
making (Ewert et al., 2015). Process-based models, traditionally con-
tingent on a mathematical formulation of physical processes, typically
contain a broad set of parameters and are therefore often considered
over-parameterised (Reichert and Omlin, 1997). Many model para-
meters are often uncertain because, among other things, of insufficient
data for their estimation. Generally, finding an accurate estimate for all

the parameters for which a model best fits the experimental data is a
complicated and computationally expensive process for complex si-
mulation models (Whittaker et al., 2010). Therefore, rigorous analysis
of parameter sensitivity and reduction of the parameter space are es-
sential to facilitate the calibration process.

Sensitivity analysis (SA) examines how model parameters and/or
model inputs affect model outputs (Song et al., 2015; Pianosi et al.,
2016). Through SA, the various parameters can be ranked based on
their relative importance. The parameters having a substantial impact
on the model outputs are considered for model calibration and those
that are less-essential in influencing the model response can be fixed to
their nominal values (Sarrazin et al., 2016) reducing hence the model
dimensionality. Identifying those parameters and processes which are
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most influential on model outputs can guide the efforts towards im-
proving the accuracies of the most influential parameters and help to
better understand the model structure and behaviour (Saltelli et al.,
2004; Sarrazin et al., 2016), and reduce model complexity (Crout et al.,
2009). This is especially important for complex process-based models
which are often considered as over-parameterised leading to problems
of non-uniqueness in parameter sets (also called equifinality).

There is a wide variety of available approaches to sensitivity ana-
lysis (Hamby, 1994; Campolongo et al., 2007; Saltelli et al., 2010).
These techniques vary from the most straightforward approach of One
parameter At a Time (OAT) perturbation to more commonly used global
approaches. While OAT quantifies model output variation in relation to
changes of one parameter at a time, global sensitivity analyses evaluate
model output sensitivity to simultaneous changes in several parameters
and can thus provide more robust sensitivity measures accounting for
non-linearity and interactions among model parameters. Despite OAT
methods being straightforward to apply, they are usually considered
unreliable for high-dimensional and non-linear models. On the other
hand, global methods which are suitable for models of various com-
plexity are often considered computationally intensive (Borgonovo and
Plischke, 2016). The Morris screening method is considered as a com-
promise between OAT and global methods, and it is well-designed to
identify influential parameters of large models since it is computa-
tionally inexpensive (Campolongo et al., 2007). Moreover, it has been
shown to identify the same influential parameters as when using global
SA methods (Confalonieri et al., 2010a; Qin et al., 2016). The Morris
method has been widely used in analysing sensitivities in a wide range
of applications, including chemical (Sin and Gernaey, 2009), hydro-
logical (Francos et al., 2003; Gan et al., 2014), biological (Zi, 2011) and
environmental (Cartailler et al., 2014) models.

Parameter sensitivities might be influenced by the crop type, the
agricultural management (e.g. N fertilisation) and biophysical en-
vironments (e.g. soil and weather) (Confalonieri et al., 2010b; Richter
et al., 2010; Zhao et al., 2014). Also, the influence of agricultural
practices and weather may vary among crops. For example, the im-
portance of the parameters used in the modelling of processes relevant
to water stress could be altered by the timing of the crop growing
season, irrigation practices, soil properties and weather conditions.
Further, the sensitivity of parameters used in the modelling of N losses
might be irrelevant when evaluated in conditions of limited N supply.
Thus, ignoring the influence of the specific conditions on parameter
sensitivity may produce misleading results.

Despite increasing awareness of the importance of SA in model
implementation and particularly in identifying influential parameters
to consider during model calibration (Moriasi et al., 2016; Sarrazin
et al., 2016; Xu et al., 2016; Hjelkrem et al., 2017), screening SA
methods have not yet, to the best of our knowledge, been applied to the
DAISY model; a widely used model for simulating water, carbon and N
transport and transformation processes in soils and plants (Hansen
et al., 2012). Although sensitivities of parts of the model have been
studied using simpler local SA techniques with a limited number of
parameters (e.g., Salazar et al., (2013); Krӧbel et al., (2010) and

Manevski et al., (2016)). Therefore, this study aims to analyse the
sensitivity of key outputs of a widely used process-based simulation
model (DAISY), applied to the winter wheat-summer maize cropping
system in North China Plain (NCP), to crop and soil relating parameters
and the extent to which parameter sensitivities are affected by crop
sequence, field management and weather conditions.

2. Materials and methods

The sensitivity of the four essential model outputs grain yield (Mg
ha−1), grain N content at harvest (kg N ha−1), cumulated evapo-
transpiration (mm) and N leaching (kg N ha−1) to crop and soil relating
parameters of the DAISY model were considered. The analysis was
performed using long-term experimental data of a winter wheat-
summer maize double cropping system from the Luancheng
Experimental Station in the North China Plain. The Morris method
(Morris, 1991) was selected in this study as it shares many of the po-
sitive qualities of the variance-based techniques whilst having the ad-
vantage of being able to screen out less influential parameters with a
relatively few runs of the multi-parameter model like DAISY
(Campolongo et al., 2007). Because output sensitivity to crop and soil
input parameters may vary across seasons and crop management, the
sensitivity was computed for different cropping seasons with diverse
weather conditions (e.g., wet, average, dry seasons) and under different
N fertiliser treatments (e.g. below average, average, high, and very high
N rates).

2.1. Experimental data

The data used for model sensitivity analysis were collected from an
ongoing experiment using the conventional double cropping system,
with winter wheat (Triticum aestivum L., early October to mid-June) and
summer maize (Zea mays L., late June to late September) in the NCP.
The field experiment was conducted at Luancheng Agro-Ecosystem
Experimental Station (37°50′N, 114°40′E, elevation of 50m) of the
Chinese Academy of Sciences, located in the piedmont plain of the
Taihang Mountains in Hebei Province in the NCP. A completely ran-
domized block design with four N fertiliser rates (200, 400, 600, and
800 kg urea-N ha−1 year−1) was used. These rates reflect possible fer-
tiliser inputs (below average, average, high, and very high) currently
used in the NCP. The summary of the crop management details such as
tillage, wheat and maize varieties, time for crop sowing and harvest,
and fertilisation and irrigation amounts and application dates used to
set up the DAISY model are given by Hu et al., (2006) and Li et al.,
(2007). Data from nine consecutive years (1997 to 2006) were included
in our study. The first 3 years (1997–2000) were used as a warm-up
period to obtain model states that are independent of the chosen initial
values and were excluded in the following analysis. The warm-up
period was judged to be sufficient for the current analysis.

Daily weather inputs required by the model were measured at a
nearby weather station placed at a distance of 300m from the field
experiment. During the maize growing season, the mean seasonal

Table 1
Weather and irrigation data for winter wheat and summer maize growing seasons at the NCP during the study period.

Winter wheat Summer maize

Season Tmean* ETo P I ETo-P Tmean ETo P I ETo-P

2000-01 6.2 395 86 200 309 24.3 311.1 215.6 150 95.5
2001-02 7.2 363 107 373 256 23.9 312.3 263.4 325 48.9
2002-03 5.0 297 156 233 141 23.5 340.2 292.6 187 47.6
2003-04 6.0 396 121 140 275 22.2 350.4 434.4 0 −84.0
2004-05 5.1 448 99 70 349 24.9 426.8 312.5 140 114.3
2005-06 6.4 490 34 280 456 24.2 372.9 347.2 140 25.7

* Tmean: Mean temperature (°C); ETo: Reference evapotranspiration (mm); P: Precipitation (mm); I: Irrigation (mm).
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