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A B S T R A C T

Time series of phenological products provide information on the timings of recurrent biological events and on
their temporal trends. This information is key to studying the impacts of climate change on our planet as well as
for managing natural resources and agricultural production. Here we develop and analyze new long term
phenological products: 1 km grids of the Extended Spring Indices (SI-x) over the conterminous United States
from 1980 to 2015. These new products (based on Daymet daily temperature grids and created by using cloud
computing) allow the analysis of two primary variables (first leaf and first bloom) and two derivative products
(Damage Index and Last Freeze Day) at a much finer spatial resolution than previous gridded or interpolated
products. Furthermore, our products provide enough temporal depth to reliably analyze trends and changes in
the timing of spring arrival at continental scales. Validation results confirm that our products largely agree with
lilac and honeysuckle leaf and flowering onset observations. The spatial analysis shows a significantly delayed
spring onset in the northern US whereas in the western and the Great Lakes region, spring onset advances. The
mean temporal variabilities of the indices were analyzed for the nine major climatic regions of the US and results
showed a clear division into three main groups: early, average and late spring onset. Finally, the region be-
longing to each group was mapped. These examples show the potential of our four phenological products to
improve understanding of the responses of ecosystems to a changing climate.

1. Introduction

Changes in climate are evident in observational weather and eco-
logical records (Kerr and Ostrovsky, 2003). According to the Inter-
governmental Panel on Climate Change (IPCC), there is strong evidence
that human activities are behind most of these changes. A tangible
impact of these modifications is the increasing frequency of tempera-
ture extremes. The spatial and temporal variability of temperature has a
direct impact on the timing of recurrent biological events of plants and
animals (bird migrations (Cohen et al., 2018), early appearance or early
flowering of the plants (Thomson, 2010), for example). This, in turn,
has a direct impact on land surface–atmosphere interactions and asso-
ciated biogeochemical cycles. Therefore, it is essential to understand
how terrestrial ecosystems are responding to climate change
(Richardson et al., 2013). In recent decades, climate change research
has increasingly involved remote sensing technologies (Rosenqvist
et al., 2003) using satellite images to derive land surface phenology and

in situ measurements provided by weather stations. The former over-
come interpolation problems but the latter supply measurements that
are easier to relate to ground processes and observations (Mendelsohn
et al., 2007). Satellite, airborne and meteorological sensors provide
observations of the Earth's surface at global, regional and, local scales.
All these measures are used to derive products to study the impact of
climate change on our planet (Broich et al., 2015; Villoria et al., 2016).

Consistent climate change indicators are needed to better under-
stand the different causes and impacts of climate change on our eco-
systems. Phenological observations constitute one of the most sensitive
indicators of climate change (Parry et al., 2007) because they contain
information about the timing of recurrent biological events that are
strongly linked to the local weather and climate of the area. Various
phenological indicators have been derived using phenological models
(Tucker, 1979; Glibert et al., 2014). The simplest phenological models
are Thermal Time models (Linkosalo et al., 2008). Among several me-
teorologically based measures of thermal time, Growing Degree Day

https://doi.org/10.1016/j.agrformet.2018.06.028
Received 18 August 2017; Received in revised form 24 June 2018; Accepted 26 June 2018

⁎ Corresponding author.

1 Both authors have contributed equally to the work development and the manuscript.

E-mail addresses: e.izquierdoverdiguier@utwente.nl (E. Izquierdo-Verdiguier), r.zurita-milla@utwente.nl (R. Zurita-Milla), toby.ault@cornell.edu (T.R. Ault),
mds@uwm.edu (M.D. Schwartz).

Agricultural and Forest Meteorology 262 (2018) 34–41

0168-1923/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2018.06.028
https://doi.org/10.1016/j.agrformet.2018.06.028
mailto:e.izquierdoverdiguier@utwente.nl
mailto:r.zurita-milla@utwente.nl
mailto:toby.ault@cornell.edu
mailto:mds@uwm.edu
https://doi.org/10.1016/j.agrformet.2018.06.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2018.06.028&domain=pdf


(GDD) is suitable for modelling plant growth (Shaykewich, 1995). GDD
is the basis of the Extended Spring Indices models (SI-x) (Schwartz,
1985; Ault et al., 2015b). The SI-x models are used to generate a Start of
Spring indicator2 which is included in the US Global Change Research
Program. The Start of Spring indicator uses the accumulation of heat to
predict the day of the year on which temperature-sensitive plans leaf
out and start blooming. Start of Spring provides a direct connection
between vegetation phenology effects and global warming.

Different studies have used the SI-x models to analyze variations in
spring onset linked to climate change (Schwartz et al., 2013; Allstadt
et al., 2015). Most of these studies are based on plant and weather
observations stations at specific locations (Ault et al., 2013, 2015b) but
current work broadens the analyses to gridded SI-x products. Originally
available at relatively coarse spatial resolutions (1° (Ault et al., 2015a)
and 25 km (Wu et al., 2016)) and more recently at resolutions of about
15 (Allstadt et al., 2015) and 4 km (Crimmins et al., 2017), from which
a resampled 2 km product is also derived.3 High spatial resolution SI-x
products have special relevance in highly variable territories such as
North America, which present multiple and complex topographies.
Thus, high spatial resolution phenological products could be used to
obtain more realistic views of local phenology and to support regional
ecological studies. Additionally, having long time series of high spatial
resolution products helps to avoid drawing misleading conclusions
based on short-term conditions and/or trends (Cohen et al., 2018).

Until now, technology has limited high spatial resolution phenolo-
gical modeling to small areas due to the huge quantity of data that had
to be processed. However, the advancement of Information and
Communications Technologies (ICT) allows not only the visualization
and analysis of climate data (Zhang et al., 2016; Arundel et al., 2016;
Bradley et al., 2010) but also the development of new SI-x products
using cloud computing (Broich et al., 2015). The increasing accessi-
bility and lower costs of cloud computing have made it possible to study
geographic phenomena at high spatial resolution, over long periods of
time, and at continental to global scales. One example of an easily ac-
cessible and free cloud computing application is Google Earth Engine.
This application is based on the well-known map-reduce paradigm in-
troduced by Google,4 which considerably speed up data processing and
helps to scale up the required computations (Gorelick et al., 2017).

In this paper we present new spring onset gridded products based on
the SI-x models. Our products, available at 1 km and for the period
1980–2015, consist of four variables (two primary, one observational
and one derived; c.f. Section 2). The primary products are verified,
validated and analyzed to evaluate their quality and to check their
consistency with previous SI-x products and studies. Our analysis fo-
cuses on studying spatio-temporal patterns of spring onset, mapping
trends and on the use of the SI-x to regionalize the conterminous US.

2. The Extended Spring Indices

The Extended Spring Indices (SI-x) are a suite of models developed
by Schwartz et al. (2013) by removing the chilling requirements from
the original of spring indices models (Schwartz, 1997). This allows the
SI-x to have a wider geographic applicability and to model spring onset
for the complete conterminous US (CONUS). The SI-x models are pri-
mary used to predict “Leaf” (LF) and “Bloom” (BL) indices for three
indicator plant species (Lilac (Syringa chinensis “Red Rothomagensis”))
and Honeysuckle (Lonicera tatarica “Arnold Red” and Lonicera korolkowii
“Zabeli”)).

The SI-x models are based on Growing Degree Hours (GDH), which
are calculated from daily minimum and maximum temperatures. These
GDH are used to define accumulation of short- and long-term variables.

These variable are used in regression based models that predict LF and
BL for each plant species. The regression coefficients were calculated by
Schwartz et al. (2013):

• The LF index is the average of the first day of the year that fulfills:

+ + +
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+ +
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DDE2*0.201 DD57*0.153 SYNOP*3.306 MDS0
*13.878 1000(Lilac)

DD57*0.248 SYNOP*4.266 MDS0
*20.899 1000(Arnold Red Honeysuckle)

DDE2*0.266 SYNOP*2.802 MDS0
*21.433 1000(Zabeli Honeysuckle), (1)

where DDE2 is the accumulated GDH from day t until day t+2,
DD57 is the accumulated GDH from day t+5 until day t+7 with t
being a temporal index from January 1st, ASYNOP is accumulative
of the synop variable which is 1 when DDE2 > 637 and otherwise is
0 and MDS0 is a counter that starts on January 1st.

• Likewise, the BL index is obtained by averaging the first day of the
year that fulfills:

− > =

− > =

− > =

ACGDH*0.116 MDS0*23.934 1000(Lilac)
ACGDH*0.127 MDS0*24.825 1000(Arnold Red Honeysuckle)
ACGDH*0.096 MDS0*11.368 1000(Zabeli Honeysuckle).

(2)

In this case, ACGDH is the accumulation of GDH from LF index and,
MDS0 is still a counter but it starts on the LF index date.

The SI-x models are not limited to predicting just these primary
indices. The SI-x also output two derivative products: Last Freeze (LSF)
and Damage Index (DI). The LSF is the last day of the year whose
minimum temperature is lower than or equal to 28° F (∼−2.22° C).
The DI links the LF index and LSF to measure the risk of frost damage.
That risk is quantified by the difference between the anomalies of LF
index and the LSF. Thus, very negative DI values indicate a high
probability of frost damage. For more information on the SI-x models
see Ault et al. (2015b), Schwartz et al. (2006).

3. Scaling up the Spring Index models

The Google Earth Engine (GEE) platform was chosen to scale up the
calculation of the SI-x models. GEE5 is a free and cloud-based appli-
cation that specializes in geospatial processing. However, GEE cannot
run the original Fortran and Matlab codes (Ault et al., 2015b) so these
had to be restructured to exploit the parallel processing environment of
the cloud. In this section, we first describe the data used in this work,
then the restructuration of the model to cloud computing, and finally,
the process of verifying, validating and analyzing.

3.1. Data

The data belongs to two main groups: the data used to obtain the SI-
x products at 1 km (environmental data) and the data applied in the
evaluation and analysis of the products (ancillary data).

• Environmental data:
Daily surface weather data (Daymet) version 2 is available in GEE.
Daymet is a continuous surface dataset available at a spatial re-
solution of 1 km for the CONUS (Thornton et al., 2014). Daymet
data is available between January 1st, 1980 and January 1st, 2016
and it covers the following spatial range: latitudes between 10 and
53° and longitudes between −133.5 and −49.9°. This means that

2 http://www.globalchange.gov/explore/indicators.
3 https://www.usanpn.org/data/spring_indices.
4 https://developers.google.com/earth-engine/. 5 https://developers.google.com/earth-engine/.
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