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A B S T R A C T

Accurate estimates of fractional vegetation cover (FVC) using remotely sensed images collected using unmanned
aerial vehicles (UAVs) offer considerable potential for field measurement. However, most existing methods,
which were originally designed to extract FVC from ground-based remotely sensed images (acquired at a few
meters above the ground level), cannot be directly used to process aerial images because of the presence of large
quantities of mixed pixels. To alleviate the negative effects of mixed pixels, we proposed a new method for
decomposing the Gaussian mixture model and estimating FVC, namely, the half-Gaussian fitting method for FVC
estimation (HAGFVC). In this method, the histograms of pure vegetation pixels and pure background pixels are
firstly fit using two half-Gaussian distributions in the Commission Internationale d’Eclairage (CIE) L*a*b* color
space. Then, a threshold is determined based on the parameters of Gaussian distribution to generate a more
accurate FVC estimate. We acquired low-altitude remote-sensing (LARS) images in three vegetative growth
stages at different flight altitudes over a cornfield. The HAGFVC method successfully fitted the half-Gaussian
distributions and obtained stable thresholds for FVC estimation. The results indicate that the HAGFVC method
can be used to effectively and accurately derive FVC images, with a small mean bias error (MBE) and with root
mean square error (RMSE) of less than 0.04 in all cases. Comparatively, other methods we tested performed
poorly (RMSE of up to 0.36) because of the abundance of mixed pixels in LARS images, especially at high
altitudes above ground level (AGL) or in the case of moderate vegetation coverage. The results demonstrate the
importance of developing image-processing methods that specially account for mixed pixels for LARS images.
Simulations indicated that the theoretical accuracy (no errors in fitting the half-Gaussian distributions) of the
HAGFVC method reflected an RMSE of less than 0.07. Additionally, this method provides a useful approach to
efficiently estimating FVC by using LARS images over large areas.

1. Introduction

Fractional vegetation cover (FVC) plays a key role in land surface
processes, including carbon and water cycles (Jung et al., 2006) and
energy transfer (Sellers, 1997). It is also an important data product in
numerical weather prediction (Gutman and Ignatov, 1997) and high-
precision agricultural analysis (Hunt et al., 2014; Matese et al., 2015).
To meet the requirements of FVC mapping and validation using satellite

products, rapid and accurate measurements of FVC are necessary (Mu
et al., 2015; Song et al., 2017). Hence, various methods have been
developed to measure FVC for these applications including visual esti-
mation, direct sampling and digital photography (Muir et al., 2011).
Among these methods, photography provides the best performance in
terms of efficient and accurate validation of satellite remote sensing
products for high-precision applications (Yan et al., 2012).

Proximal (very close range, i.e. a few meters) sensing methods have
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a clear advantage over satellite remote sensing in terms of spatial re-
solution and flexibility. The data obtained from proximal sensing can
provide highly accurate estimates of FVC directly from images (Liu and
Pattey, 2010; Macfarlane and Ogden, 2012; Song et al., 2015) while the
satellite remote sensing images will typically require that FVC be esti-
mated based on calibrations of vegetation indices against independent
estimates of FVC from proximal sensing methods (Carlson and Ripley,
1997). However, traditional proximal sensing methods, lacking the
spatial coverage needed for mapping FVC over large regions, are po-
tentially labor intensive even over medium-scale areas and local con-
ditions may limit site access. Recent technological innovations have led
to an increase in the availability of unmanned aerial vehicles (UAVs)
(Watts et al., 2012), which potentially overcome many limitations of
both traditional proximal and satellite imagery platforms. Low-altitude
remote-sensing (LARS) UAVs are advantageous because of their flex-
ibility, operational ability in a variety of environmental conditions, and
capacity for mapping at intermediate spatial scales. The application of
UAVs has extended to crop monitoring, precision agriculture and other
Earth science studies (Bhardwaj et al., 2016; Zarco-Tejada et al., 2012).
Researchers widely agree that commercial cameras mounted on UAVs
are powerful tools for assessing FVC (Chianucci et al., 2016; Torres-
Sánchez et al., 2014).

UAVs are flexible in terms of their flight altitude, which facilitates
the collection of imagery at a range of spatial scales (Mesas-Carrascosa
et al., 2014). For example, Chapman et al. (2014) deployed UAVs fitted
with a fixed, wide angle lens at heights ranging from 20m to 80m, in
order to evaluate various plant breeding trials. Generally, as UAVs are
required to map FVC rapidly over larger areas, the flight altitude must
be increased, which reduces the spatial resolution. Spatial resolution
could be maintained by narrowing the camera focal length as altitude
increases but this would increase the number of flights required by
what are frequently UAVs with only short flight time, which would
negate one of the main advantages of UAVs. As a result, UAVs are often
flown at varied altitudes but constant focal length (e.g., Samseemoung
et al., 2012). However, reducing the spatial resolution of LARS imagery
increases the proportion of mixed pixels, which is likely to reduce the
accuracy of medium-scale FVC mapping (Hsieh et al., 2001; Jones and
Sirault, 2014).

Image analysis methods developed for proximal sensing methods
are poorly suited to estimate FVC from LARS when mixed pixels are
abundant in the images. Hsieh et al. (2001) established a simulation
scheme to assess the effect of the spatial resolution on classification
accuracy and found that the classification errors increased rapidly with
decreasing spatial resolution. Jones and Sirault (2014) reported that a
low spatial resolution has a significant negative influence on image
classification. Torres-Sánchez et al. (2014) observed the decrease in
accuracy of FVC estimates in the early growth stages of wheat when the
spatial resolution of LARS imagery was reduced.

Early image analysis methods depended on supervised

classification, which requires human intervention, has low operational
efficiency and produces noisy results. Later, automatic classification
methods were based on unsupervised clustering algorithms, category
tree methods and threshold-based methods (Yan et al., 2012). Re-
searchers developed numerous threshold-based methods based on ve-
getation indices in the red-green-blue (RGB) color space; such indices
include the excessive green index (Woebbecke et al., 1995; Liu and
Pattey, 2010), normalized difference index (Pérez et al., 2000), green
leaf algorithm (Chianucci et al., 2016), etc. Other color spaces, such as
the Commission Internationale d’Eclairage (CIE) L*a*b* and hue sa-
turation intensity (HSI), have also been used for classification (Liu et al.,
2012; Macfarlane and Ogden, 2012). These automatic algorithms have
modestly improved the efficiency of validation. However, they were
specifically developed for proximally-sensed images and unsuited to
images containing many mixed pixels. In addition, previously reported
studies tended to use UAV-based commercial cameras to collect images
over sparse scenes, such as early crop and rangeland areas (Rango et al.,
2009; Torres-Sánchez et al., 2014), while densely vegetated scenes
(FVC > 0.7) have seldom been studied.

In this study, we propose an image analysis method, HAGFVC for
estimating FVC that is scale invariant and specifically addresses the
problem of large and variable numbers of mixed-pixels in LARS images
acquired from varying altitudes. The theory and implementation of the
half-Gaussian fitting method for extracting FVC are described in Section
2. Three published methods, LAB2 (Macfarlane and Ogden, 2012),
Shadow-Resistant Algorithm for Extracting the Green FVC (SHAR-
LABFVC; Song et al., 2015) and excess green vegetation index (ExG;
Woebbecke et al., 1995) are introduced for comparison as well. Section
3 describes the real data and simulated data used to validate and
analyze the HAGFVC method. In Section 4, the results of the HAGFVC
method and the three other methods are compared, and an uncertainty
analysis is presented. Sections 5 and 6 present the discussion and
conclusions, respectively.

2. Methods

2.1. Gaussian mixture model for FVC

For vegetated surfaces, the CIE a* distribution of an image usually
was considered as a Gaussian mixture model (GMM) distribution (Coy
et al., 2016; Liu et al., 2012). In proximally sensed images, assuming
almost no mixed pixels in these images, the GMM derives from the
distributions of pure vegetation and pure background material and
exhibits a distinct bimodal distribution mode (Liu et al., 2012; Song
et al., 2015). This mixture distribution function H x( ) can be given by:

= +H x ω N μ σ ω N μ σ( ) ( , ) ( , )v v v b b b
2 2 (1)

where ω, μ and σ are weight, mean value and standard deviation, re-
spectively; subscripts v and b indicate vegetation and background,

Fig. 1. Schematic diagrams of GMM distribution of CIE a* values at different spatial resolutions, (a) a* distribution at a high spatial resolution (i.e. proximal sensing),
(b). a* distribution at a lower spatial resolution (i.e. low-altitude remote sensing).
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