ARTICLE IN PRESS

Agricultural and Forest Meteorology xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journal homepage: www.elsevier.com/locate/agrformet

Ammonia emissions from a beef feedlot: Comparison of inverse modeling techniques using long-path and point measurements of fenceline NH₃

Kira B. Shonkwiler^a, Jay M. Ham^{b,*}

^a Colorado State University, Department of Atmospheric Science, Fort Collins, CO, USA
^b Colorado State University, Department of Soil and Crop Sciences, Fort Collins, CO, USA

ARTICLE INFO

ABSTRACT

Keywords: Ammonia Beef feedlot Inverse and bLs dispersion techniques Fenceline emissions Beef emission factors Nitrogen (N) deposition in Rocky Mountain National Park, USA (RMNP) and adjacent alpine ecosystems has led to increased focus on ammonia (NH₃) emissions from livestock operations in this region. A study was conducted at a commercial beef feedlot in Northern Colorado, USA to quantify NH₃ fluxes, estimate emission factors (EFs), and evaluate measurement methodologies. Point and line-integrated fenceline NH3 measurements were taken over a 78-day study at a large feedlot east of RMNP focusing on transport towards the park. Ammonia fluxes were estimated using two inverse models, a backward Lagrangian stochastic approach (WindTrax) and a simpler inverse dispersion approach (FIDES) using input data from both NH₃ datasets. Line-integrated NH₃ concentrations were obtained from a long-path laser and single-point concentrations were collected with a cavity ringdown analyzer, both positioned on the downwind fenceline. Mean feedlot NH_3 concentration (± 1 standard deviation, σ) was 601 \pm 246 μ g m⁻³ (1013 \pm 421 ppb_v), where peak values often exceeded several ppm_v. Concentrations from the long-path sensor were slightly higher than the point sensor when winds were from the feedlot (p = 0.0005), but 2.5 times less data were collected with the long-path instrument due to dust or laserreflector alignment issues. Regardless of the model used, fluxes showed a diel pattern peaking in the afternoon with early morning minimums, Emissions varied more by inverse model than by sensor, with WindTrax emissions 25% higher than FIDES. Composite 24-h mean emissions ($\pm~1\sigma$) from FIDES were 48 $\pm~24\,\mu g$ m $^{-2}\,s^{-1}$ $(EF = 71 \pm 35 \text{ g hd}^{-1} \text{ d}^{-1})$, while WindTrax averaged 60 $\pm 30 \ \mu\text{g m}^{-2} \text{ s}^{-1}$ $(EF = 89 \pm 44 \ \text{g hd}^{-1} \text{ d}^{-1})$ (p < < 0.0001). Overall 24-h mean EF for the summer (across both models) was 80 \pm 39 g hd⁻¹ d⁻¹. When dietary N was considered (13.25% crude protein), based on 24-h composites FIDES estimated NH₃-N released to the atmosphere to be 35.6% of fed-N, while WindTrax showed 44.6% fed-N. The overall mean across models was 40.0% fed-N.

1. Introduction

Animal agriculture is the largest global source of atmospheric ammonia (NH₃), comprising 50–64% of all anthropogenic emissions (FAO, 2006; NRC, 2003). Concentrated animal feeding operations (CAFOs) such as beef feedlots are considered NH₃ "hotspots" due to continual excretion of urea nitrogen (N) in waste within confined areas (e.g., cattle pens). Once airborne, volatilized NH₃ can travel downwind and have environmental impacts through N deposition at tens to hundreds of kilometers from the feedlot. Ecological consequences of NH₃ include eutrophication, biodiversity changes, and influences on water chemistry and the soil microbiome (Galloway et al., 2004; Vitousek et al., 1997), while also contributing to increased regional haze (Bauer et al., 2016; Behara et al., 2013).

Ammonia also enhances formation of particulate matter (Arogo

et al., 2006), whereby NH_3 gas converts to ammonium (NH_4^+) aerosols that have longer atmospheric lifetimes, making long-distance transport/deposition possible (Aneja et al., 2008). Additionally, NH_3 has an indirect effect on climate change after deposition, being a precursor to formation of strong greenhouse gases such as nitrous oxide and odd oxides of N (NO_x) (Erisman et al., 2011).

The implications of such issues are important for the northern part of Colorado's *Front Range*; a heavily urbanized region coinciding with intensive crop, livestock, and industrial activities directly adjacent to sensitive mountain ecosystems. Year-round, regional upslope wind events can transport pollutants from this mixed-use corridor westward to sensitive alpine biomes along the eastern flank of the scenic Rocky Mountains where deposition of NO_x- and NH₃-containing compounds have been shown to have measurable effects on the ecosystem (Baron et al., 2000; Bowman et al., 2012; Burns, 2004; Lieb et al., 2011; Wolfe

https://doi.org/10.1016/j.agrformet.2017.10.031

^{*} Corresponding author. Present address: 1170 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA. *E-mail addresses*: jmh.3554@gmail.com, jay.ham@colostate.edu (J.M. Ham).

Received 3 July 2017; Received in revised form 6 October 2017; Accepted 25 October 2017 0168-1923/ @ 2017 Elsevier B.V. All rights reserved.

ARTICLE IN PRESS

K.B. Shonkwiler, J.M. Ham

Agricultural and Forest Meteorology xxx (xxxx) xxx-xxx

Nomenclature		PM ₁₀ PTFE	Particulate matter less than 10 μm in diameter Polytetrafluoroethylene
AGWS	Acid-gas washing samplers	RMNP	Rocky Mountain National Park
bLs	Backward Lagrangian stochasic	STP	Standard temperature and pressure
CAFO	Concentrated animal feeding operation	TDR	Touchdown ratio
CP	Crude protein	WT	WindTrax
CRDS	Cavity ring-down spectroscopy analyzer		
DOY	Day of year (calendar day)	Symbols	
EF	Emission factor		
FIDES	Flux interpretation by dispersion and exchange over short	σ	Standard deviation
	range	$U_{u,v,w}$	Components of the mean wind $(m s^{-1})$
FG	Flux gradient method	u*	Friction velocity (m s^{-1})
LP	Long-path laser	θ	Wind direction (degrees, °)
LST	Local standard time	L	Obukhov length (m)
LVL	Light value level	RH	Relative humidity (%)
MDV	Mean diurnal variation	Т	Temperature (°C)
mMDV	Modified MDV	z ₀	Roughness length (cm)
MOST	Monin-Obukhov stability theory	C _{NH3}	NH_3 concentration (µg m ⁻³ or ppb _v)
NH_3	Ammonia gas	C _{bgd}	Background NH ₃ concentration ($\mu g m^{-3}$ or ppb _v)
NH_4^+	Aqueous ammonium ion	$\sigma_{u,v,w}/u^*$	Component wind statistics (dimensionless)
Ν	Nitrogen	x, z	Location of concentration sensors in FIDES (m)
NO _x	Odd oxides of nitrogen	x _s , z _s	Upwind source location in FIDES (m)
QA/QC	Quality assurance/quality control	\mathbb{R}^2	Regression goodness of fit (dimensionless)

et al., 2001, 2003). A land use map of the Northern Front Range is shown in Fig. 1 which identifies Rocky Mountain National Park (RMNP) in addition to nearby CAFOs. There are over 500,000 head of cattle within 8 counties east of RMNP in 2014 (\sim 150 km radius), with cattle in beef feedlots accounting for about 75% of the total (CDPHE, 2014). July wind roses in Fig. 1 for Greeley and Fort Morgan show that easterly (i.e., upslope) summertime winds are common. It follows that NH₃ emissions from CAFOs have been implicated as significant source of N impacting the park (Malm et al., 2013).

While livestock emissions on the eastern plains of Colorado are significant, determining source apportionments (i.e., finding the origin of deposited N) for RMNP is very complex and fraught with uncertainty (Gebhart et al., 2011; Malm et al., 2013; Rodriguez et al., 2011; Thompson et al., 2015). Apportionments are determined via atmospheric modeling, of which a major input parameter are CAFO NH_3 emissions (to constrain simulations). Unfortunately, most in-situ NH_3 emissions studies to date are from CAFO-heavy areas other than Colorado (such as Canada, Australia, and especially the Texas Panhandle, USA). Considering regional differences (climate, population, and proximity to RMNP) between the Texas Panhandle and Northern Front Range, more measurements of NH_3 fluxes from representative Colorado feedlots would improve the NH_3 inventory for the state and reduce uncertainty when modeling nitrogen deposition in RMNP.

Emissions factors (EFs) for NH₃ are usually determined from field

Fig. 1. Land use map for Colorado Front Range (USGS, 2017), with major cities and known large CAFOs (beef and some sheep feedlots with 1000 + head or dairies with 700 + head). July 5-year wind roses (for cities Greeley and Fort Morgan, locations designated by black arrows) show summertime winds near areas of high CAFO concentration tend to have a significant upslope component. Note proximity of urban (reds/purple) to forest/woodland (green) and high instances of agricultural vegetation (light yellow) amidst grassland (orange), where most CAFOs reside. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Download English Version:

https://daneshyari.com/en/article/6536664

Download Persian Version:

https://daneshyari.com/article/6536664

Daneshyari.com