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A B S T R A C T

Climate model projections coupled with process-based crop models are advocated for assessing impacts of cli-
mate change on crop yields and for informing crop-level adaptations. However, most reported studies are vague
on the choice of the global circulation models (GCMs) for climate projections, and on the corresponding un-
certainty with this type of model simulations. Here we investigated whether climate-crop modelling can be used
for identifying crop management-level adaptation options. We focused our analyses on a case study for maize in
southern Africa using the APSIM crop growth model and projections from 17 individual climate models for the
period 2017–2060 for the contrasting representative concentration pathways 2.6 and 8.5. Intensification of
nitrogen fertiliser use (from 30 to 90 kg N ha−1) was simulated as an example of a crop management-level
adaptation to climate change. Uncertainties in crop yield predictions were about 30 to 60%, i.e. larger than
expected crop responses to most management-level interventions or adaptations. Variation in simulated yields
was caused by inter-seasonal rainfall variability and uncertainty with climate models. Some GCMs resulted in
significantly different maize yield predictions, without any clear pattern across sites. Given these high un-
certainties, we argue that crop modellers should be cautious when informing future crop management adap-
tation strategies based on climate-crop model ensembles. A better use of crop models is the simulation of crop
responses to current weather variability aiming at the identification of crop management practices for coping
with climate variability. Promising practices can then be evaluated with farmers on their feasibility over a range
of plausible future biophysical and socio-economic farming conditions.

1. Introduction

Climate change will affect crop production (Lobell and Gourdji,
2012). To study this and to quantify the effects, process-based crop
growth models driven by projections of future weather are commonly
used (e.g. Challinor et al., 2009a; White et al., 2011). The main source
of weather projections are the Coupled Model Intercomparison Project
-Phase 5- (CMIP5) model simulations (Ramirez-Villegas et al., 2013).
The global circulation models (GCMs) used for these simulations are,
however, highly complex and contain many inherent uncertainties
(Mearns, 2010). They have resolutions typically of the order of a hun-
dred kilometres, disparate from crop growth models that operate at the
smaller scale of the field. To project local climate change that can be
used with crop models at field scale, data from GCMs are downscaled
using a variety of methods (e.g. Fowler et al., 2007). This entails further
uncertainties and potential bias in projections (Wilby et al., 1998;
Ramirez-Villegas and Challinor, 2012).

A growing number of studies use local climate model projections
coupled with crop growth models to inform crop management-level
adaptation options to climate change, such as altering planting dates
and densities, cultivars and crop species, fertiliser regimes and crop
rotations or associations, and quantify their impact on crop yields
(Fig. 1) (e.g. Challinor et al., 2009b; Traore et al., 2017; Waha et al.,
2013). Matthews et al. (2013), for example, argued that crop modelling
can contribute to climate change adaptation by identifying which fu-
ture crop management practices will be appropriate.

Most reported studies that assess impacts of climate change on crop
production are vague on the choice of the GCM(s) for their future cli-
mate projections. Some studies have tried to identify the ‘best’ GCM or
set of GCMs for a particular region or location of interest by comparing
model outputs with historical weather data (e.g. Samadi et al., 2010).
However, it seems that selecting GCMs based on the quality of their
climate simulation in a particular location does not result in conclusions
that are systematically different from those obtained by choosing
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models randomly (Pierce et al., 2009). Moreover, a limited number of
GCMs may not produce a representative range of plausible future cli-
mate projections (Ruane and McDermid, 2017). Studies increasingly
use multi-GCM ensembles to cover the range of possible outcomes and
to deal with uncertainties in future climate projections (Challinor et al.,
2009b; Guan et al., 2017). The variability of the results from the models
in the ensemble is a measure of the uncertainty as to how to model the
system.

To investigate the extent to which GCMs can be used for estimating
future crop yields, and more specifically, for identifying local crop
management-level adaptation options to climate change, we used cli-
mate projections from 17 individual climate models that were part of
the IPCC’s Fifth Assessment Report (CMIP5; IPCC, 2013) (Table S1 in
the Supplementary materials). We focused our analyses on simulating
maize (Zea mays L.) grain yields at four locations in southern Africa,
representing different agro-ecological conditions. Maize is the major
staple food crop in that region, mainly produced with low level of
nutrient inputs by smallholder farmers. Southern Africa is one of the
hotspot for climate change in Africa, where climate change has been
predicted to severely impact food security (Lobell et al., 2008).

2. Methods

Four sites were selected in southern Africa where long-term field
experiments with maize are being conducted by CIMMYT (International
Maize and Wheat Improvement Centre) (Table S2, Supplementary
materials). These are: the Monze Farmer Training Centre, Zambia
(16°14′27″S, 27°26′31″E, 1108m), the Sussundenga Research Station,
Mozambique (19°19′1″S, 33°14′27″E, 608m), the Chitedze Research
Station, Malawi (13°58′22″S, 33°39′14″E, 1145m), and the
Domboshawa Research Station, Zimbabwe (17°36′25″S, 31°8′27″E,
1543m). The climate at the sites is tropical wet and dry (Aw, Köppen
Climate Classification) with a unimodal rainfall pattern. Average an-
nual rainfall is 750mm at Monze, 1090 mm at Sussundenga, 960mm at
Chitedze and 880mm at Domboshawa. Soils are Lixisols (Domboshawa
and Sussundenga) and Luvisols (Chitedze and Monze), with distinct
plant available water capacities, and fertility levels as indicated by the
different soil carbon contents (Table S2, Supplementary materials). A
detailed description of sites and experiments can be found in
Thierfelder et al. (2013).

Simulated downscaled weather data (solar radiation, maximum and
minimum temperature, and rainfall) for the four sites were obtained

using the MarkSim GCM tool (http://gisweb.ciat.cgiar.org/
MarkSimGCM, Jones and Thornton, 2013). MarkSim is a spatially ex-
plicit daily weather generator that uses a third order Markov chain
process to generate daily rainfall, radiation, and temperature. The si-
mulated period was 2010–2060 for the highly contrasting re-
presentative concentration pathways (RCPs) 2.6 (lowest emissions) and
8.5 (highest emissions). Mean seasonal temperature and cumulative
seasonal rainfall were calculated based on a pre-defined length of the
cropping season, i.e. from the 1st October to the 31st May of the fol-
lowing year.

We used the crop model APSIM, version 7.5 (Agricultural
Production Systems sIMulator). APSIM simulates crop development and
growth at a daily time step as a function of weather conditions, soil
properties and management practices, such as chemical fertiliser and
organic matter application, planting density and date, cultivar char-
acteristics and tillage (through simulated soil water and nitrogen lim-
itations to plant growth). A detailed description of the model can be
found in Keating et al. (2003). The model was parameterized for maize
growth (medium-duration cultivars, i.e. with a growing cycle of ∼120
days) at the four sites using the data from the long-term experiments
(Thierfelder et al., 2013). The APSIM maize cultivar-specific parameters
are listed in Table S3, Supplementary Materials. The parameterized
APSIM model was then used to simulate the response of maize to cli-
mate change at the four sites for the period 2017–2060 under the two
emission scenarios, RCP2.6 and 8.5. Two levels of nitrogen fertilisation
were simulated: 1) 15 kg N ha−1 at sowing and 15 kg N ha−1 as top-
dressing 35 days after sowing, and 2) triple dose, i.e. 45 kg N ha−1 at
sowing and 45 kg N ha−1 as topdressing. The model was reinitialised at
the start of each year’s run to make the simulations independent, i.e. for
each year the soil water, carbon and nitrogen variables were reset to the
initial values. Sowing date was defined as the last day of three con-
tinuous days with rainfall accumulation of 20mm within the defined
sowing window of 1 October to 31 December. The crop response to CO2

was not included, because the CO2 fertilisation effect on photosynthesis
in C4 crops is minor and the secondary effect of reducing crop tran-
spiration is not well captured in crop growth models such as APSIM
(Durand et al., 2018). For all simulations, CO2 concentrations were held
constant at 330 ppm.

GCM effects on mean seasonal temperature, cumulative seasonal
precipitation and simulated maize grain yields were estimated using
ANOVA procedures and pairwise comparisons (Tukey’s HSD test at
P < 0.05). A factorial decomposition of the APSIM model response was
calculated using a general linear model with fixed terms to determine
how sensitive the simulated yield output is with respect GCM, emission
scenario, year (cropping season) and management (nitrogen fertilisa-
tion) for each location. A sensitivity index (SI) for a factor or interac-
tions of factors was calculated as the ratio of the sum of squares asso-
ciated with the factor or interaction of factors over the total sum of
squares of simulated yield data, i.e. the total variability in the model
responses (see equations in Table S4, Supplementary materials). The
analyses were done with PROC GLM in SAS (version 8.02).

3. Results

3.1. Climate change predictions

Predicted changes in seasonal mean temperature were highly vari-
able largely depending on the GCM used and the study site. Overall,
across the four sites they varied under RCP2.6 from −0.2 °C for BCC-
CSM1-1 at Monze to +1.5 °C for GFDL_CM3 at Domboshawa, and under
RCP8.5 from +1.0 °C for BCC-CSM1-1 at Domboshawa to +3.0 °C for
MIROC-ESM at Domboshawa (Fig. 2). As expected, temperatures were
predicted to become warmer under RCP8.5 compared with RCP2.6. The
variation in temperature changes for a given GCM was higher in
Domboshawa and Monze than in Chitedze and Sussundenga, as in-
dicated by the size of the circles in Fig. 2. Predicted changes in seasonal

Fig. 1. Evolution of the number of papers published on studies coupling local climate
model projections with crop models to inform and quantify impacts of adaptation stra-
tegies to climate change. Search string used in Scopus was: (“climate change” OR
“changes in climate”) AND “crop*” AND “model*” AND “adapt*” AND (“downscal*” OR
“local*”), whereby an asterisk is a replacement for any ending of the respective term.
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