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A B S T R A C T

Carbon use efficiency (CUE), defined as the ratio of net primary production (NPP) to gross primary production
(GPP), represents the capacity of plants in converting assimilated atmospheric carbon dioxide to ecosystem
carbon storage. Process-based models are important tools for simulating NPP and GPP; yet the model perfor-
mance in simulating vegetation CUE has not been fully explored. The goal of this paper is thus to investigate the
spatial variations in CUE from different process-based carbon cycle models in comparison with that from
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, and to analyze their linkage with cli-
mate factors. The global average CUE derived from the five process-based models is 0.45 ± 0.05 (range from
0.38 to 0.52), slightly lower than the value of 0.48 obtained from MODIS data. A strong latitudinal gradient of
CUE, with greater CUE at high latitudes, is well agreed by these different datasets. However, there also exist
considerable discrepancies in CUE estimations among those products, especially in temperate Northern
Hemisphere. Furthermore, for both the satellite-based dataset and results from process-based models, vegetation
CUE declines non-linearly with increase in temperature, but remains relatively stable with enhanced pre-
cipitation. Our results also indicate that the differences in global patterns of CUE estimated by different ap-
proaches could be primarily resulted from their systematic differences in autotrophic respiration (Ra) rather than
in GPP. Understanding mechanisms behind spatio-temporal changes in Ra is therefore a critical step towards
better quantifying global CUE.

1. Introduction

Carbon use efficiency (CUE), which is defined as the proportion of
gross primary production (GPP, g Cm−2 yr−1) converted into net pri-
mary production (NPP, g Cm−2 yr−1), represents the efficiency of
plants to sequester carbon from the atmosphere and is increasingly
recognized as an important parameter shaping ecosystem carbon sto-
rage (Gifford, 2003; Chambers et al., 2004; De Lucia et al., 2007; Zhang
et al., 2009; Piao et al., 2010; Vicca et al., 2012; Bradford & Crowther,
2013; Campioli et al., 2015). In practice, GPP usually represents the
total amount of carbon captured through photosynthesis, and NPP is
the net carbon stored in plant as new material after the reduction of
GPP through autotrophic respiration (Ra, g Cm−2 yr-1) (Chapin et al.,
2002). Therefore, this dimensionless parameter is also a measure of
how GPP is partitioned into NPP and Ra, which could have a deep
impact on vegetation structure and functioning (Ise et al., 2010). In
particular, quantifying the responses of vegetation CUE to its climatic

drivers could improve our understanding of the dynamics of biosphere-
atmosphere carbon exchange under current and future climate change
(Ise et al., 2010; Bloom et al., 2016).

Earlier terrestrial carbon-cycle models like CASA (Potter et al.,
1993) and FOREST-BGC (Running & Coughlan, 1988) often assumed a
fixed value of CUE to quantify Ra (De Lucia et al., 2007). However,
there is increasing evidence suggesting that CUE actually varies with
many factors, including vegetation type, climate conditions, manage-
ment status, site fertility and forest stand age (Ryan et al., 1997;
Amthor, 2000; Mäkelä & Valentine, 2001; Giardina et al., 2003; De
Lucia et al., 2007; Piao et al., 2010; Vicca et al., 2012; Campioli et al.,
2015). As an example, forest ecosystem CUE, according to a meta-
analysis of 60 observations, ranged from 0.23 to 0.83 among different
forest types (De Lucia et al., 2007).

The spatial variation of vegetation CUE across the global land and
its association with environmental factors, however, remain poorly
understood; although there have been many measurements of
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vegetation CUE at stand or site level (Ryan et al., 1997; Giardina et al.,
2003; Van Iersel, 2003; Law et al., 2004; Metcalfe et al., 2010). The
challenge comes from both the lack of sufficient observations and the
large uncertainty generated in direct up-scaling from site measurements
to larger spatial scale estimates. Recently, Zhang et al. (2009) used GPP
and NPP products derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) to estimate the global distribution of ve-
getation CUE. Yet, the conclusion drawn from a single dataset is sen-
sitive to its systematic biases and errors, making it critical to compare
global patterns of vegetation CUE among different datasets. On the
other hand, newly-emerged process-based carbon cycle models have
been widely used to simulate major physiological and ecological pro-
cesses (e.g., photosynthesis, respiration, carbon allocation and phe-
nology) and ecosystem structures (Moorcroft, 2006; Huntingford et al.,
2011; Wang et al., 2014a,b; Prentice et al., 2015; Wang et al., 2016;
Piao et al., 2017; Liu et al., 2018; Wu et al., 2018). These process-based
models may provide us a new approach to estimate vegetation CUE at
the global scale.

Currently there are a variety of approaches available in obtaining
CUE at the global scale (Ise et al., 2010; Zhang et al., 2009, 2014). But
none of them are solely based on observations but rely upon certain
assumptions and simplifications about model structures and parameters
in simulating photosynthesis and autotrophic respiration. Hence, there
is no consensus on the spatial variation of vegetation CUE and its dri-
vers among different data streams. It is necessary to identify the sources
of variation in CUE simulated by different models and/or dataset
(MODIS), which could inform us of the potential uncertainties in the
simulation of CUE and provide guidance on the future model devel-
opment.

Here we conducted a systematic study of spatial patterns of vege-
tation CUE and their climatic drivers based upon MODIS satellite data
and five process-based models. Moreover, we also examined the dis-
crepancies in modelled CUE among different datasets and explored the
potential reasons.

2. Material and methods

2.1. MODIS satellite data

Similar to the studies of Zhang et al. (2009; 2014), we used the
MODIS GPP and NPP products (collection-055) over the period
2000–2012 (downloaded from http://files.ntsg.umt.edu/data/
NTSG_Products/MOD17/GeoTIFF/MOD17A3/GeoTIFF_30arcsec/) to
calculate vegetation CUE. The MODIS algorithm integrates a light use
efficiency logic using satellite observed LAI/FPAR to estimate GPP with
an autotrophic respiration module to derive NPP (Running et al., 2004;
Zhao et al., 2006; Zhao & Running, 2010). Both GPP and NPP in MODIS
are driven by the NCEP/DOE II reanalysis climatic dataset (http://
www.esrl.noaa.gov). In addition to using satellite and climate data as
inputs, it also requires biophysical parameters of biomes that are stored
in the biome parameter look-up table (BPLUT). The uncertainties in the
MODIS algorithm and its input data could lead to the biased estimation
of NPP and GPP compared to in-situ measurements (e.g. Zhang et al.,
2009, 2014; Sjöström et al., 2013). Note that the latest collection-6
MODIS NPP/GPP products (ftp://ladsweb.nascom.nasa.gov/allData/6/
) were not used in our study because of large data gaps in this version.
For example, in MODIS NPP product, there are some missing tiles in
western Africa, most of Europe and the regions north of 60 °N (Fig. A.1
in Supplementary materials). We found that the estimated MODIS CUE
from the collection-6 show higher values in the temperate zone of the
two hemispheres and lower values in African sub-Sahel areas than those
from collection-55 over the common region and periods (Fig. A.1 in
Supplementary materials), suggesting the uncertainty of MODIS pro-
duct in characterizing productivity. We therefore do not contend that
MODIS CUE is necessarily more accurate than any of the five process
model simulations.

2.2. Process-based carbon cycle models

This study used global annual GPP and NPP simulated by five
process-based carbon cycle models: the CSIRO Atmosphere Biosphere
Land Exchange-3.5 (CABLE) (Wang et al., 2010, 2011); Community
Land Model-4.0 (CLM4CN) (Thornton et al., 2007); Lund-Potsdam-Jena
(LPJ) (Sitch et al., 2003); Organizing Carbon and Hydrology in Dy-
namic Ecosystems (ORCHIDEE) (Krinner et al., 2005); and Vegetation
Integrative Simulator for Trace gases (VISIT) (Ito, 2010). All these
models were run at a spatial resolution of 0.5° (Huang et al., 2015; Piao
et al., 2015). Here, we focus on the model simulations which were
driven by observed climate change based on CRU-NCEP v.4 (http://
dods. extra.cea.fr /data/ p529viov/ cruncep/) and the observed in-
creasing atmospheric CO2 concentrations. Note that CLM4CN and
CABLE have taken nitrogen cycle into account; therefore effects of ni-
trogen-limitation in photosynthesis could be assessed. Further in-
formation about the characteristics of each model is listed in Supple-
mentary Table A.1, and the main processes and parameters of
photosynthesis and autotrophic respiration in Supplementary Table
A.2.

2.3. Analyses

Because MODIS satellite data start in 2000, we used the simulations
of the five process-based models from 2000 to the latest year available
(different datasets have different time series, see Table A.1 in
Supplementary materials). GPP and NPP outputs from MODIS data
were re-gridded to 0.5° spatial resolution to be consistent with those of
the process-based model outputs. Then, the monthly outputs of GPP and
NPP from process-based models were combined to give annual values.
To rule out areas with negligible vegetation, those pixels with mean
annual normalized difference vegetation index (NDVI) lower than 0.1
were excluded from the analysis (Piao et al., 2014; Zhu et al., 2016;
Wang et al., 2017). The vegetation CUE at the pixel scale was calculated
as:

=CUE NPP
GPP (1)

where NPP refers to annual net primary productivity (g C m−2 yr-1) and
GPP to annual gross primary productivity (g C m−2 yr-1). Then, the
yearly CUE was further averaged across the full study period to obtain
multi-year mean value at the pixel scale. On the other hand, we cal-
culated the yearly global mean CUE based on the average of CUE from
all pixels. In addition to the area, the CUE in each pixel is also weighted
by its GPP, which ensures that the regions with higher productivity will
contribute more to the global mean CUE.

To compare the spatial patterns of vegetation CUE in the MODIS
data with that produced by the process-based models, we applied the
comparison map profile (CMP) method — a statistic-based new way in
comparing two spatially explicit datasets (Gaucherel et al., 2008). This
method estimates similarity indices between the two datasets using
moving windows to compare their relationships at multiple spatial
scales simultaneously. Firstly, the absolute value of the distance (D)
between the means of dataset x and dataset y is computed according to
the equation:

= −D x y| | (2)

where both x and y are sample means of their moving windows re-
spectively. Secondly, another similarity is obtained by the cross-corre-
lation coefficient (CC) to compare the spatial data structures:
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