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A B S T R A C T

Statistical analyses of yield and climate data across large spatial scales are an important method for exploring
crop sensitivity to a variable and changing climate. However, a variety of issues complicate the interpretation of
climate impacts on yield, including spatial and temporal collinearity among climate variables and between
climate and management variables, as well as complex responses of yield to interactions among climate variables
across different growth development phases. All of these issues, if unaccounted for, can compromise yield
projections under climate change. In this study, we present a series of nested models to analyze rainfed maize
(Zea mays L.) yield response to climate (temperature, precipitation, solar radiation) at specific growth-devel-
opment phases and under different crop management practices. The models, fit using elastic net regression to
address collinearity, indicate that spatial gradients in management, which occur at the same scale as climate
variability, explain the majority of location-based and total yield variance. Coefficient estimates of yield re-
sponses to high temperature/low precipitation conditions during key growth development phases are consistent
with reported physiological responses of maize, but only when interaction terms are included between tem-
perature and precipitation. Yield responses to temperature and solar radiation are also modified by prior tem-
perature regime. Overall, failure to parameterize management practices and interactions between temperature
and precipitation leads to systemic errors in models linking maize yields to climate impacts at large spatial
scales, both under current and projected climate.

1. Introduction

Maize is the leading cereal crop produced globally (USDA FAS,
2017) and demand is expected to increase by up to 50% in the coming
century (Rosegrant et al., 2009). During the same period, mean annual
temperatures are expected to increase by 3.1–4.7 °C in the Midwest U.S.
(Walsh et al., 2014), including much of the U.S. Corn belt which ac-
counts for approximately 30% of the global maize production. Annual
precipitation is also projected to increase, with greater change in the
eastern range of the U.S. Corn Belt than the western range (IPCC, 2014).
The majority of the increase is expected to occur during winter, while
June, July, and August precipitation may actually decline (Sinclair,
2010; Knutti and Sedláček, 2013).

High temperatures, low soil moisture, and the combination of high
temperature with low soil moisture can impact maize physiology and,
ultimately, yield (Westgate and Hatfield, 2011; Prasad et al., 2008;

Mittler, 2006). The specific physiological responses to temperature,
moisture, or combined temperature/moisture stress, depend on the
growth development phase (GDP) of the crop at the time of onset of
stress (Barker et al., 2005). However, the relative impacts of tempera-
ture and low soil moisture on yield response can be difficult to de-
termine using statistical modeling because of local collinearity between
the two climate stressors. Soil moisture stress results in stomatal clo-
sure, decreased latent heat flux, and increased sensible heat transfer
from vegetated surfaces to the atmosphere that can lead to higher local
air temperatures. High temperature anomalies are therefore often the
result of, and highly collinear with, periods of low soil moisture that
follow negative precipitation anomalies (Trenberth and Shea, 2005). In
addition, decreased latent heat loss by the crop canopy during soil
moisture stress drives canopy temperatures above ambient air tem-
peratures, particularly under high radiation loads (DeJonge et al.,
2015). Moisture-stressed canopies can reach temperatures several
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degrees higher than ambient air temperature (Siebert et al., 2014), so
that heat stress thresholds established with air temperature may vary
depending on soil moisture stress. Since higher air temperatures linked
to greenhouse gas emissions may or may not be regionally or locally
associated with reduced soil moisture conditions, statistical models
relating current yield losses to high temperature anomalies in the pre-
sence of soil moisture stress may not provide robust predictions of fu-
ture yield responses to increased temperature expected with climate
change.

Crop management (e.g., crop rotation, tillage practices, planting
date and planting rate, timing and quantity of fertilizer inputs, weed
management, and pest management) directly impacts yield. Growers
regularly modify management practices to make a priori adjustments to
achievable yield based on perceived underlying local (including cli-
matic) limitations on yield potential of a site or region. For example,
cultivar maturity class and planting date are adjusted to account for
expected length of the growing season, and planting rate is reduced in
regions with low average growing season precipitation like the western
U.S. Corn Belt (Lindsey and Thomison, 2016). These management
variables, therefore, can follow similar spatial gradients as climate
variables (USDA-NASS, 2007). Failure to adjust for non-climate factors
like crop management that impact spatially distributed crop yields can
lead to systemic bias in estimation of climate impacts on cropping
systems in observational statistical studies that aggregate yield data
across different locations (Challinor et al., 2015).

The above discussion indicates that climate impacts on maize yields
will depend on interactions among the climate variables, as well as crop
growth stage and crop management. Therefore, analyses of observa-
tional yield data at broad spatial scales to identify crop response to
climate variability will require information on multiple collinear cli-
mate variables and their interactions that can propagate stress, data on
the crop GDP at the time of stress, and the temperature, moisture (soil
and/or precipitation) conditions, and management practices that pre-
ceded the stress event (Harrison et al., 2014). It will also require
methods of statistical analysis that will not ascribe all of the variability
in crop response to a single climatic variable in a situation with high
levels of collinearity. This is especially relevant to studies of the impacts
of projected climate change on crop yields, since the current correlation
structure among climate variables (particularly precipitation and tem-
perature) in a given region is not expected to remain the same under
climate change (Seager et al., 2014).

Many common statistical routines applied to environmental data,
including ordinary least squares (OLS) regression, are sensitive to col-
linearity (Dormann et al., 2013). Numerically, collinearity inflates
standard errors of coefficient estimates and increases the likelihood of
type 2 (false negative) errors in hypothesis testing. Practically, colli-
nearity can lead to a situation where a variable or variables (pre-
cipitation) with a strong mechanistic control on the response variable
(yield) may have an insignificant p-value, while a collinear predictor
variable (temperature) with a smaller or no mechanistic control may
appear significant.

Previously we showed that 2005–2012 growing season tempera-
tures had minimal impact on irrigated maize yields in the western U.S.
Corn Belt (Carter et al., 2016). Our analyses suggested that thermo-
acclimation, adjustments to management practices and improved maize
genetics could potentially offset expected negative impacts of higher
temperatures, and that previously identified statistical relationships
between high temperatures and yields in observational analyses may
have been due in part to correlation between high temperature and low
precipitation (Carter et al., 2016). Although studies conducted in con-
trolled environments have reported evidence of physiological heat
stress in maize (e.g., Hatfield, 2016), it remains unclear whether these
physiological temperature stress thresholds are commonly exceeded
under the current climatology of the U.S. Corn Belt when there is little

or no underlying moisture stress. In this paper, we examine the impact
of co-variable climate parameters (air temperature, precipitation, and
radiation) and management parameters (planting rate, planting date,
and cultivar maturity class) on rainfed maize yields in Missouri, Iowa,
Nebraska and Kansas (MINK) using penalized (elastic net) regression
(Zou and Hastie, 2005). This analysis is conducted on a novel dataset of
rainfed yield entries from the National Corn Growers’ Association
(NCGA) Yield Contest—a dataset that includes detailed information on
management. Using a series of nested linear mixed effects models, we
evaluate whether maize yield response to high temperature is influ-
enced by the timing of the stress event and precipitation concurrent
with the stress event. We also evaluate whether failure to parameterize
crop management factors, which spatially co-vary with climate in the
MINK region (Supplementary materials (SM) Text S1, Fig. S1) and exert
mechanistic control on regional yields, can lead to systematic bias in
interpretation of climate impacts on inter-annual yield anomalies. To
our knowledge, this is the first attempt to leverage detailed information
on crop management practices to inform a regional statistical analysis
of climate impacts on maize yield.

2. Methods

2.1. Maize yield, management, and climate data

Rainfed maize yield data for the MINK region from 2005–2012 were
obtained from the NCGA National Yield Contest (http://www.ncga.
com/for-farmers/national-corn-yield-contest). Farm-level yield contest
data included county location, farm ID, maize yield, and a variety of
management variables, including planting date, planting rate, previous
crop, tillage practice, and cultivar name (SM Text S2, Fig. S2). A variety
of climate variables were also considered, and were separated based on
GDP – Early-growth (EG), Reproductive period (Sen), and Grain-fill (G).
Table 1 summarizes the climate variables used in our analyses. Detailed
information on the climate data and methods for defining GDP based on
growing degree days (GDDs) can be found in SM Text S3 and Fig. S3, as
well as in Carter et al. (2016). Detailed information on the calculation
of antecedent available precipitation can be found in SM Text S4.

2.2. Model development

Six nested, linear mixed effects models were constructed to explore
and isolate the impacts of different management and climate variables,
and interactions among climate variables, on yield (Fig. 1). The sim-
plest model (the NULL model) includes no covariates, but rather assigns
random effects to each location and each year in the dataset. Thus, the
NULL model accounts for site-specific differences in yield that are the
same across each year in the 2005–2012 period (‘Location’ effect), and
regional shifts in yield that are experienced at all sites in each year
(‘Year’ effect). These random effects can be used to partition un-
explained variance in the yield dataset (i.e., variance not explained by a
covariate) into location-based and year-based variance components
(discussed in Section 2.4). These random effects were also included in
all other models. The first of these is a management-only model (MGT),
which includes a detailed parameterization of several crop management
variables: planting rate (PR), planting date (PD), cultivar maturity class
(CultGDD), tillage (till), and previous crop (PC). The second model
(CLIM) includes multiple climate variables by GDP. The third model
(MGT+CLIM) combines the MGT and CLIM models to see how esti-
mated climate coefficients in the CLIM model change when manage-
ment covariates are included. Two other variants of the MGT+CLIM
are also considered. These are the MGT+CLIM* model which includes
interaction terms between climate variables to determine how these
interactions change the interpretation of climate effects on yield, and
the MGT+CLIM** model which includes yield response to interactions
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