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A B S T R A C T

A two-dimensional analytical model for describing the mean flow behavior inside a vegetation canopy after a
leading edge in neutral conditions was developed and tested by means of large eddy simulations (LES) em-
ploying the LES code PALM. The analytical model is developed for the region directly after the canopy edge, the
adjustment region, where one-dimensional canopy models fail due to the sharp change in roughness. The de-
rivation of this adjustment region model is based on an analytic solution of the two-dimensional Reynolds
averaged Navier–Stokes equation in neutral conditions for a canopy with constant plant area density (PAD). The
main assumptions for solving the governing equations are separability of the velocity components concerning
the spatial variables and the neglection of the Reynolds stress gradients. These two assumptions are verified by
means of LES. To determine the emerging model parameters, a simultaneous fitting scheme was applied to the
velocity and pressure data of a reference LES simulation. Furthermore a sensitivity analysis of the adjustment
region model, equipped with the previously calculated parameters, was performed varying the three relevant
length, the canopy height (h), the canopy length and the adjustment length (Lc), in additional LES. Even if the
model parameters are, in general, functions of h/Lc, it was found out that the model is capable of predicting the
flow quantities in various cases, when using constant parameters. Subsequently the adjustment region model is
combined with the one-dimensional model of Massman [Bound. Layer Meteorol., 83(3):407–421, 1997], which is
applicable for the interior of the canopy, to attain an analytical model capable of describing the mean flow for
the full canopy domain. Finally the model is tested against an analytical model based on a linearization ap-
proach.

1. Introduction

In canopy turbulence, flow across edges and clearings is a field of
particular interest, as the largest perturbations in the flow quantities
can be encountered in the vicinity of such sharp transitions in surface
roughness (Belcher et al., 2012). As pointed out by Dupont and Brunet
(2008), these perturbations can influence the flow over distances of
several tree heights downwind from canopy edges. Therefore, mea-
surements inside and above canopies, e.g. of scalar fluxes like green-
house gases, can also be influenced by edges over similar distances
(Kanani-Sühring and Raasch, 2014). Due to the fact that these mea-
surements mainly rely on the eddy covariance (EC) technique, hetero-
geneities in the measurement footprint play an even more important
role, due to the requirements of the standard EC technique (Aubinet
et al., 2012; Burba, 2013). While the effects of forest edges on flux
measurements were already investigated in several studies (Chen et al.,

1993; Cadenasso and Pickett, 2000; Dupont et al., 2011) stated that one
key issue for interpreting flux measurement near to edges is the dis-
tance required by the flow to fully adjust with the canopy, which de-
pends on the character of turbulent flow inside of the canopy.

To investigate turbulent flow inside canopies and close to canopy-
edges, various approaches have been used in the past. While canopy-
edge scenarios were mainly investigated by the comparison of numer-
ical studies to wind tunnel measurements (Dupont and Brunet, 2008),
field experiments (Dalpé and Masson, 2009; Schlegel et al., 2012;
Kanani et al., 2014) or both (Yang et al., 2006; Banerjee et al., 2013),
the number of analytical investigations is smaller. However, inter-
pretation of EC measurements could benefit from the prediction of
analytical models for the influence of edges at the measurement loca-
tion. Apart from that, the determination of properties like the aero-
dynamic resistance of heterogeneous canopies can benefit from analy-
tical models, as approaches for homogeneous canopies, like the one of
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Yang et al. (2001), might fail for canopies, which are mainly under the
influence of edges.

Concerning analytical investigations of canopy flow, several studies,
based on one-dimensional approaches were performed (Massman,
1987, 1997; Harman and Finnigan, 2007). These models, which are
applicable for horizontally homogenous condition, resulted in the
analytical solution of an exponentially decaying velocity profile inside
the canopy. However these one-dimensional approaches are too limited
to describe the effect of forest edge flow.

Improvements towards a two-dimensional analytical model were
made by Belcher et al. (2003), where the governing flow equations
were linearized on small perturbations, added to an incoming loga-
rithmic velocity profile. The advantage of this approach was that the
mean velocities could be calculated for all distinct regions of the ca-
nopy-edge-flow-scenario.

These regions are shown in Fig. D.1, where (i) labels the impact
region before the edge, (ii) the adjustment region shortly past the edge,
(iii) the canopy interior behind the adjustment region, (iv) the canopy
shear layer located around the canopy top and (v) the roughness change
region above the canopy. The adjustment region, where the un-
perturbed flow adapts to the canopy, and the canopy interior, where the
flow has fully adapted to the canopy, are the two regions of major in-
terest in the following work.

An essential ingredient of the linearization approach is the much
smaller magnitude of the velocity perturbations in comparison to the
incoming wind profile. As Belcher et al. (2003) stated, this translates to
the requirement of a canopy that is either sparse or short enough that
the flow is never able to fully adjust to it.

The aim of the presented work is to overcome this issue of a line-
arization approach. Therefore we derived an analytic solution to the
governing flow equations in the adjustment region, where one-dimen-
sional models fail. Studying the aforementioned adjustment zone is of
interest, as a plethora of applications rely on the flow within this re-
gion. These applications include seed and pollen dispersal from ad-
jacent areas into the canopy zone and conversely (Trakhtenbrot et al.,
2014), determination of forest-floor fluxes of CO2 or O3 using micro-
meteorological methods (Launiainen et al., 2013), or separating
aerosol-sized particle deposition onto foliage and forest floor in patchy
forested environments (Grönholm et al., 2009; Huang et al., 2014; Katul
et al., 2010), to name a few.

The analytical solution was developed for a neutral canopy-stripe-
scenario in a predefined background wind, where the canopy stripe is
homogeneous in crosswind direction (two-dimensional scenario) and is,
therefore, defined by three length scales, the canopy length L, the ca-
nopy height h and the adjustment length scale Lc, which are also de-
picted in Fig. D.1. The adjustment length scale can be used to describe
the width of the adjustment region, which can reach an extension of up
to 15Lc (Dupont and Brunet, 2008).

Besides gaining a functional description of the velocity components
and the pressure, another important outcome of the presented analy-
tical investigation is the insight on the interplay of the three involved
length scales L, h and Lc.

To determine the occurring model parameters (integration con-
stants) a large eddy simulation (LES) of a reference canopy was per-
formed employing the LES code PALM (Maronga et al., 2015). In Sec-
tion 4, the analytical model for the adjustment region, equipped with
these parameters, is subsequently tested on variations of the three de-
fining length scales by performing further LES.

To gain an analytical model for the full range of the canopy and to
deduce an expression for the length of the adjustment region, subse-
quently the adjustment region model was combined with the model of
Massman (1997) for the canopy interior.

Finally the current model is compared with the model of Belcher
et al. (2003) for increasing length L of the investigated canopy.

2. Derivation

2.1. Background

The basis of the subsequent analytical investigation of flow across a
canopy edge are the Reynolds averaged continuity and momentum
equation for an incompressible 2D flow when neglecting Coriolis and
buoyancy effects (neutral case) within a canopy

∂ =u 0,i i (1)

∂ + ∂ = − ∂ + ∂ −u u u
ρ

p τ F( ) 1 ,t i j i j i j ij di
(2)

where ui is the mean velocity component in direction xi, ∂j(uiuj) de-
scribes the advection of the flow field, ρ the mean fluid density, p the
mean perturbation of the hydrostatic pressure, τij the Reynolds stress
tensor and Fdi the drag force, the latter modeling the effect of the ca-
nopy on the flow. The drag force is defined according to Shaw and
Schumann (1992) and Watanabe (2004) as

= → −F L u u h h1/ Θ(x/ )Θ(1 z/ ),c idi (3)

where the adjustment length scale is defined following Belcher et al.
(2003, 2012) through Lc = 1/(Cda) with the drag coefficient Cd and the
PAD a, →u is the wind speed, x = x1, z = x3 and Θ is the Heaviside step
function ensuring the drag force to be zero outside of the canopy. The
definition of the drag force, presented here, describes a canopy with
constant canopy height h and with a canopy-edge located at x = 0.

To simplify the analysis a constant a was considered throughout the
canopy, defined by

=a hPAI/ (4)

with the canopy height h and the plant area index PAI.
Focusing on a steady state scenario, the flow quantities were con-

sidered to be time independent (∂tui = 0). Therefore, Eqs. (1) and (2) in
terms of the velocity components u = u1 and =w u3 inside the canopy
are given by

∂ + ∂ =u w 0x z (5)
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Following the argument of Belcher et al. (2003), which relies on
Townsend (1972) and Jackson and Hunt (1975), it becomes apparent
that the Reynolds stress gradients have just a small impact in Eqs. (6)
and (7) when compared to the remaining terms. In Appendix A this
assumption is proven by comparing the magnitudes of the several terms
for a LES of a canopy stripe with h = 10 m and Lc = 16.7 m, showing
that the gradients of the Reynolds stress are mostly smaller than 5% of
the residual terms. Therefore the Reynolds stress gradient terms will be
neglected in Eqs. (6) and (7) in the subsequent investigations, which
results in a turbulently inviscid scenario (Banerjee et al., 2013). Fur-
thermore, following Banerjee et al. (2013), the pressure was eliminated
from these two equations by computing their curl, which finally results
in
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To non-dimensionalize the spatial variables x/z, they were re-scaled by
h through the introduction of the new variables x and z by

= =x zx/h and z/h (9)

Rewriting Eqs. (5) and (8), in these re-scaled quantities gives

∂ + ∂ =u w 0,x z (10)
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