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A B S T R A C T

Weather has a major impact on agriculture. Statistical models have been used to estimate or forecast crop yield
from weather information. In this paper, a general statistical framework is developed in order to rank and
quantify the information content of weather information. The methodology is tested over the US, for corn yield.
The weather sensitivity of different corn production areas is first analyzed. More than fifty agro-climatic indices
have been compared. The study shows that variability in yield is more likely to be due to weather variability in
medium and low production areas. The two best yield predictors are the temperature and then the Standardized
Precipitation–Evapotranspiration Index (SPEI) in July. While corn in the north Eastern regions is not sig-
nificantly affected by weather variation, on the East coast, the weather-based mixed model is able to explain
about 32% (corr= 0.57) of the yield variability, but in some particularly weather-sensitive states, such as
Virginia, this number can reach 64% (corr= 0.80). Two applications are tested: yield estimation at the end of
the year for monitoring purpose, and seasonal prediction. It is shown that some agro-climatic indices can sig-
nificantly improve crop yield modeling when compared to simpler direct weather information (average corre-
lation increase of 0.12 at the US scale).

1. Introduction

How historical, current and future climate affects socio-economic
activities has received tremendous attention in areas such as agriculture
(Thompson, 1988; Kotlowski, 2007; Kandiannan et al., 2002), energy
(Adams et al., 1998; Kaylen and Koroma, 1991), logistics in sales, or
tourism (Jewson and Brix, 2005). In agriculture, crop yield is strongly
influenced by several factors (e.g., genetics, soil properties, irrigation)
but weather is the major uncontrollable factor influencing the devel-
opment of crops (Taylor and Carlson, 1997). The accurate prediction of
crop yields over large areas is critical for the national food supply,
prices, farmer plans, or irrigation (Liang, 2004), so quantifying the
impact of weather on crop yield is essential.

Many studies have shown the importance of weather information to
explain crop yield. Three major modeling approaches have been used to
study this relationship: biophysical or crop simulation models
(Hoogenboom, 2000; Jones et al., 2003; Kotlowski, 2007); empirical
regression models (Kandiannan et al., 2002; Thompson, 1988; Tannura
et al., 2008; Lobell et al., 2007), and functional models (Basso et al.,
2013; Chipanshi et al., 2015) which are a simplification and/or a
combination of the two. In this paper, we focus on empirical regression
models: they are less process-oriented than crop models, but they are
more data-driven and they require less auxiliary information such as

soil properties. They are calibrated on historical data with as little a
priori information as possible.

Some agriculture characteristics are sometimes used (e.g., soil
properties, grain size) (NASS, 2016; Asseng et al., 2013) as inputs to the
crop yield statistical models. In order to provide the forecasting model
information more directly related to crop yield, some agro-climatic
indices (i.e., weather-based indices) have been considered as inputs.
Agro-climatic indices, especially growing degree-days or some type of
water stress indices (e.g., Precipitation-Evaporation), have long been
used for crop yield predictions (Lass et al., 1993; Holzkamper et al.,
2011). The use of direct weather data became common only in recent
decades, when gridded weather data became a major input for regional
yield forecasting (Zhang and Huang, 2011; Moreto and Souza, 2015).
Traditionally, agro-climatic indices are obtained from direct weather
data in order to better represent the link between weather and crop
growth and to facilitate decision making in agriculture (Lepage et al.,
2012; Caubel et al., 2015). For instance, Lass et al. (1993), Robertson
et al. (2013) or Bornn and Zidek (2012) use Growing Degree Days
(GDD); Butler and Huybers (2013) use Growing Degree Days (GDD) and
Killing Degree Days; Moreto and Souza (2015), Zhang and Huang
(2011) use evapotranspiration; and Moral García et al. (2014) uses
various agro-climatic indices to assess the wine suitability in a region.

Some studies relate the changes of agro-climatic indices trend to
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changes in crop phenology in Eurasia regions (Menzel et al., 2003;
Moonen et al., 2002; Genovese et al., 2005; Semenov et al., 2006), or in
Sahelian countries (Ben Mohamed et al., 2002), or in the major part of
North America (Robeson, 2002; Feng and Hu, 2004; Terando et al.,
2011) (the last, with frost days, thermal time, and heat stress index).
Torvanger et al. (2004) analyzed the important relationship between
yields of potatoes/barley/oats/wheat, and temperature (growing de-
gree days)/precipitation in Norway.

Others studies examined the dependence of agriculture to the
weather variability analyzing the time series of several weather indices
(Bazgeer et al., 2014). Qian et al. (2010) analyzed a set of agro-climatic
indices representing Canadian climatic conditions for field crop pro-
duction. Qian et al. (2001) used precipitation, maximum temperature,
minimum temperature and solar radiation. Bélanger et al. (2000) used
water deficit (precipitation–evapotranspiration), effective growing de-
gree-days, and Corn Heat Units (CHU) in order to determined the
weather impact on agriculture in Quebec. These indices are considered
as the most used weather variables to determine how well suited is a
land for cereals growing, according to the Agronomic Interpretation
Working Group (1995). Graczyk and Kundzewicz (2016) examined the
lengths of the growing season and the frost-free season, the days of
occurrence of the last spring frost and first autumn frost, and the annual
sums of growing degree-days for three values of temperature threshold
in Poland.

Only a few studies (Trnka et al., 2011; Lalic et al., 2013; Peltonen-
Sainio et al., 2010) tested more than 4 or 5 agro-climatic indices (such
as the Free Frost Period, the Corn Heat Units, the Standardized Pre-
cipitation–Evapotranspiration Index, or the soil moisture), in combi-
nation to simple weather variables (temperature and precipitation), in a
crop yield forecasting application. Here, we propose to analyze more
than 50 different agro-climatic indices.

Our application focuses on corn yield over the eastern US. The goal
of this paper is: (1) to propose an approach to identify the most im-
portant agro-climatic indices for crop yield forecasting, (2) to identify
which US regions are the most weather-sensitive for crop yield, and
most importantly, (3) to measure the impact of using agro-climatic
indices instead of direct weather information for crop yield forecasting.
Section 2 presents the materials and methods. The sensitivity analysis is
presented in Section 3 and the yield forecast improvements in Section 4.

2. Materials and methods

2.1. Data

2.1.1. Agricultural data
The corn yield data were collected by the US Department of

Agriculture NASS (National Agricultural Statistics Service) at the
county level. A long historical record is available from 1910 to 2013 but
the yield time-series are not complete for all counties. The eastern US
produces more corn than the western part because of a more favorable
climate and topography. The Corn-Belt region (mainly Iowa, eastern
Nebraska, Minnesota, Illinois, and Indiana) is known to be the biggest
corn-producing region in the US. In 2016, these five states produced
more than 60% of the US corn production (18% for Iowa, 11% for
Nebraska, 10% for Minnesota, 15% for Illinois, and 6% for Indiana).

2.1.2. The main corn production basins in the US
Corn ranks first in the US grain production. With more than 38Mha

sown in 2016, it is well ahead of wheat (20Mha) and soybeans
(33Mha). Maize is mainly grown in 5 major production areas and these
different zones produce maize under very variable conditions (Fig. 1):

• Zone 1 (Corn Belt): with a humid continental climate, is located in
the center of the United States, on rich and deep soils. The area is
particularly well suited to maize, which is mostly grown in rotation
with soybeans. Since rainfall is abundant, irrigation is not necessary,

and dry yields are the highest in the world: 12 t/ha in 2016. Annual
precipitation decreases from over 100 cm in the East to less than
60 cm in the West. The amount of rainfall during the five-month
growing season is relatively constant (between 43 and 48 cm) (Neild
and Newman, 1990). Thus, only 12% of the maize area is irrigated.
In 2016, the Corn Belt produced alone 60% of the US maize pro-
duction.

• Zone 2: in the Northern Great Plains (North and South Dakota), non-
irrigated corn, in rotation with soybean, competes with HRS (Hard
Red Spring) wheat. The yield was 9.3 t/ha in 2016, and this area
produced 9% of the US maize.

• Zone 3 (the central plains): Nebraska, Kansas, Colorado are the
second largest producing area, with much of the maize irrigated
from a 450,000 km2 groundwater (Ogallala aquifer) that extends on
8 states. It is located east of the Rocky Mountain Range, with a dry
continental climate and produces a quarter of the US maize pro-
duction. Corn competes with HRW wheat (Hard Red winter) and
soybeans, which are also irrigated. The level of the groundwater
table is nevertheless decreasing (−77 cm on average between 1980
and 1995), which could eventually pose irrigation problems. In
2016, this area produced 17% of the maize in the US and had a yield
of 9.8 t/ha.

• Zone 4: maize is also grown along the Mississippi River (Lower
Mississippi River Basin), where crops are irrigated with moderation.
They include SRW (Soft Red winter), soybean, sorghum, and cotton.
In 2016, this area yielded 3% of the maize of the US and had a yield
of 9.6 t/ha.

• Zone 5: finally, the East Coast produces about 3.4% of maize with an
average yield of 6.2 t/ha (all numbers come from the US Department
of Agriculture, National Agricultural Statistics Service). Irrigation is
limited.

Irrigation is very important in some of the western regions.
According to the US Geological Survey in 2005, “the majority of
withdrawals (83%) and irrigated acres (74%) were in the 17 western
states”. These regions should be discarded in order to obtain a clearer
link between precipitation and corn yield. Therefore, all federal states
located west of 103° West and some other isolated states (for instance
Nebraska and Texas) have not been considered in the study. Finally, the
28 States considered in the study are: Illinois, Indiana, Iowa, Kentucky,
Michigan, Minnesota, Missouri, Ohio, and Wisconsin (Zone 1); North
Dakota, and South Dakota (Zone 2); Kansas, Nebraska, and Oklahoma
(Zone 3); Arkansas, Louisiana, Mississippi, and Tennessee (Zone 4);
New Jersey, Delaware, Maryland, Virginia, West Virginia,
Pennsylvania, North Carolina, South Carolina, Georgia, Alabama (Zone
5).

The analysis has been realized at the level of each production zone,
and also at the US level (considering the 28 states listed above).

Fig. 2 illustrates the natural dispersion and variability of the yield
anomalies for the five production zones. In zone 1, there is a lower
dispersion (suggesting a lower weather sensitivity and low inter-annual
variability), but many negative extreme values (suggesting a higher
sensitivity to adverse weather conditions). Areas 2, 3 and 5 have very
similar natural variability. Zone 4 has a low dispersion and few extreme
values.

2.1.3. Direct meteorological data
Temperature (monthly mean, daily min, daily max and daily mean)

and cumulative precipitation data were collected for the period
1979–2013, from the ERA-Interim re-analysis of the European Center
for Medium-Range Weather Forecasts (Uppala et al., 2005). We will
focus on these 35 years. The US territorial organization and its sub-
division into counties are used to project data, from its original
75 km×75 km regular grid into county-level data. To perform the
spatial interpolation, we used the closest pixel technique. It is crude and
could be improved (bi-linear interpolation for instance) but in our case,
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