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A B S T R A C T

The eddy covariance method is regularly used for measuring gas fluxes over agricultural fields and natural
ecosystems. For many applications, it is desirable to partition the measured fluxes into constitutive components:
the water vapor flux into transpiration and direct evaporation components, and the carbon dioxide flux into
photosynthesis and respiration components. The flux variance similarity (FVS) partitioning method is based on
flux variance similarity relationships and correlation analyses of high-frequency eddy covariance data (Scanlon
and Sahu, 2008; Scanlon and Kustas, 2010, 2012). The FVS method is relatively complex computationally, and
that complexity has likely been an impediment to greater use and testing of the procedure. In this work, we
present a new algebraic solution to the key computational task in the partitioning algorithm, which significantly
simplifies the FVS method. We also introduce Fluxpart, a free and open source Python 3 module that implements
the FVS partitioning procedure. Example flux partitioning calculations are presented.

1. Introduction

The eddy covariance method is routinely used to measure gas fluxes
over agricultural fields and other landscapes (Baldocchi, 2014). Greater
insight into the functioning of agroecosystems is possible if the mea-
sured gas fluxes can be separated into their constitutive components:
the water vapor flux into transpiration and direct evaporation compo-
nents, and the carbon dioxide flux into photosynthesis and respiration
components.

General information about flux partitioning can be found in the
other articles of this special issue, as well as the recent reviews by Kool
et al. (2014) and Anderson et al. (2017b). The focus of this paper is the
flux variance similarity (FVS) partitioning method of Scanlon et al., a
procedure based on flux variance similarity relationships and correla-
tion analyses of eddy covariance data (Scanlon and Sahu, 2008; Scanlon
and Kustas, 2010, 2012). The FVS method is gaining in popularity as
evidenced by a number of recent publications (e.g. Palatella et al.,
2014; Sulman et al., 2016; Wang et al., 2016; Anderson et al., 2017a).
However, wider testing and adoption has been hindered by the relative
difficulty of implementing the method, which requires complex and
computationally intensive processing and analysis of high-frequency
eddy covariance data.

We have two objectives. First, we examine some computational
aspects of the FVS partitioning algorithm, and introduce a new

algebraic method for the key computational task in the procedure,
eliminating the need for more complicated numerical calculations.
Second, we introduce Fluxpart, a free and open source Python 3 module
intended to permit wider use, testing, and development of the FVS
partitioning procedure. Example calculations with Fluxpart are pre-
sented.

2. Background

The FVS flux partitioning method has been described at length in
the literature (Scanlon and Sahu, 2008; Scanlon and Kustas, 2010;
Palatella et al., 2014). We present here a brief overview.

Monin-Obukhov similarity theory implies that high-frequency time
series for scalars, such as the water vapor (q) and carbon dioxide (c)
concentrations, will exhibit perfect correlation when measured at the
same point within a homogeneous atmospheric layer (Monin and
Obukhov, 1954; Scanlon and Sahu, 2008). Actual measured correla-
tions may deviate from this prediction for several reasons, including the
presence of multiple, distinct source/sinks for the scalar quantities
within the layer (Scanlon and Albertson, 2001; Scanlon and Sahu,
2008). Flux variance similarity and perfect correlation may exist for
concentrations associated with a single source/sink, but the super-
position of fluxes from multiple source/sinks degrades the overall cor-
relation.
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In the case of q and c, one source/sink arises from the exchange of q
and c across leaf stomata during transpiration and photosynthesis, and a
second from non-stomatal direct evaporation and respiration. If only
transpiration and photosynthesis occur, similarity theory predicts
ρq,c=−1 (a negative correlation because transpiration acts as a q
source and photosynthesis as a c sink). Conversely, if only evaporation
and respiration occur, theory predicts ρq,c=1 (evaporation and re-
spiration being sources for q and c, respectively).

Scanlon and Sahu (2008) note that one may think of evaporation
and respiration as contaminating the transpiration and photosynthesis
fluxes, driving the q–c correlation away from the expected ρq,c=−1.
The premise of the FVS technique is that an analysis of the degree of
that contamination can be used to infer the relative amounts of stomatal
and non-stomatal fluxes present.

More specifically, Scanlon and Sahu (2008) propose the following
partitioning analysis. The water vapor concentration, carbon dioxide
concentration, and vertical wind velocity (w) measured at a point on an
eddy covariance tower can each be decomposed as

= + ′q q q (1a)

= + ′c c c (1b)

= + ′w w w (1c)

where angle brackets indicate the temporal mean over a short interval
(e.g., 15–60min) and the prime indicates the fluctuation from the
mean.

According to the conventional eddy covariance method, the water
vapor and CO2 fluxes for the interval are, respectively,

= ′ ′F w qq (2a)

= ′ ′F w cc (2b)

The gas concentration fluctuations and fluxes can be further decom-
posed into components regulated by stomatal and non-stomatal con-
trols:

′ = ′ + ′q q qe t (3a)

′ = ′ + ′c c cr p (3b)

= + = ′ ′ + ′ ′F F F w q w qq q q e te t (4a)

= + = ′ ′ + ′ ′F F F w c w cc c c r pr p (4b)

where ′qe and ′qt are the water vapor concentration fluctuations asso-
ciated with non-stomatal (evaporation) and stomatal (transpiration)
controls, respectively; ′cr and ′cp are the CO2 concentration fluctuations
associated with non-stomatal (respiration) and stomatal (photosynth-
esis) controls, respectively; and Fqe, Fqt, Fcr , and Fcp are the corresponding
flux components. The FVS partitioning method is applicable only when
the photosynthesis CO2 flux is directed downward and the other fluxes
are upward,

<F 0cp (5a)

>F F F, , 0c q qr t e (5b)

Scanlon and Sahu (2008) assume that the transfer efficiencies of the
stomatal-controlled scalars are greater than those of the non-stomatal
scalars, which leads to the following approximations for the scalar
correlations (Bink and Meesters, 1997; Katul and Hsieh, 1997)
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where σ indicates the standard deviation over the averaging interval.

These definitions and approximations allowed Scanlon and Sahu (2008)
to derive a series of equations that can be used to calculate the con-
stituent flux components. As discussed by Palatella et al. (2014), the
main computational task in this procedure involves solving two si-
multaneous nonlinear equations that can be expressed more compactly
than originally presented by Scanlon and Sahu (2008). Similarly to
Palatella et al. (2014), we formulate this two-equation system as
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Note that Eq. (7) has two branches due the presence of the plus–minus
operator in Eq. (8b). Eq. (8a) would similarly have two branches except
that the “minus” branch can be ruled out since it can never satisfy the
required ′ ′ ′ ′ >w q w q/ 0e t

The system contains five parameters that are known directly from
eddy covariance data and three unknown parameters. The known
parameters are: = ′ ′F w qq and = ′ ′F w cc , the water vapor and CO2

fluxes, respectively; σq
2 and σc

2, the variances of the water vapor and CO2

concentrations, respectively; and ρq,c, the correlation coefficient for the
water vapor and CO2 concentrations. The free parameters are: σc

2
p , the

variance of the photosynthesis CO2 concentration; ρc c,p r , the correlation
coefficient for the photosynthesis and respiration CO2 concentrations;
and W, the leaf-level water use efficiency. The latter is defined

=
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By definition or by physical reasoning, it is required that
− < <ρ1 0c c,p r , >σ 0c

2
p , and W < 0 (Scanlon and Sahu, 2008). If a

value for W is known from leaf-level measurements or can be otherwise
estimated (see Scanlon and Sahu, 2008, Appendix A), then Eq. (7) can
be solved for the remaining unknowns, σc

2
p and ρc c,p r (explained in

greater detail in the next section). The flux components are then given
by
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= −F F Fc c cr p (10b)

=F F W/q ct p (10c)

= −F F Fq q qe t (10d)

The partitioning procedure does not always produce a result be-
cause a solution to Eq. (7) may not exist or the solution may be non-
physical (that is, the obtained values for either σc

2
p or ρc c,p r may be in-

valid, or the obtained flux components may violate the directional re-
quirements in Eq. (5)). No solution for a given time interval or series of
intervals may be the correct outcome. For example, meteorological
conditions may be incompatible with the theory or assumptions un-
derlying the FVS method. On the other hand, Scanlon and Sahu (2008)
found that, in some instances, the root cause of failure may be the
presence of large-scale eddies that affect flux variance similarity re-
lationships but do not contribute significantly to fluxes. They therefore
proposed retrying failed analyses after filtering the high-frequency q, c,
and w time series data to remove large-scale (low-frequency)
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