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A B S T R A C T

Shifts in vegetation phenology induced by climate change are substantially modifying various ecosystem pro-
cesses, and those changes can in turn affect weather and climate systems. Realistic modeling of spring vegetation
green-up is critical to improving process-based ecosystem models of the Tibetan Plateau (TP) and for better
understanding of the coupling between TP terrestrial biophysical processes and the Asian monsoon system.
However, no model is available for simulating the vegetation green-up date (VGD) across the entire TP. In this
study, we first assessed the ability of several existing state-of-the-art phenological models to estimate VGD across
the TP. We then modified the existing models by adding environmental constraints identified by partial least-
squares analyses. The modified models simulated VGDs with lower estimation errors than other models (Mean
absolute error: 8.2 days vs. 8.7–12.9 days; P < 0.01, t-test). Moreover, although our model captured the inter-
annual variations in VGD better than any previous model, the correlation coefficient between predicted and
remotely sensed VGDs was still low, especially in the western TP. This study revealed the necessity of con-
sidering multiple factors in VGD models and highlighted the challenge of developing models that will better
represent phenology in future ecosystem models.

1. Introduction

Vegetation green-up date (VGD) characterizes the onset of photo-
synthetic activity on land and has important implications for terrestrial
ecosystem processes, such as carbon and water cycling and the energy
balance between the biosphere and atmosphere (Cleland et al., 2007;
Forkel et al., 2015; Jeong et al., 2012; Keenan et al., 2014; Menzel and
Fabian, 1999; Richardson et al., 2013; Wu et al., 2016). It is also con-
sidered to be the simplest and one of the most sensitive indicators of the
response of vegetation to recent climate warming, especially at high
latitudes and in high-altitude regions (Körner and Basler, 2010;
Parmesan, 2006; Peñuelas et al., 2009; Vitasse et al., 2011; Walther
et al., 2002; Zheng et al., 2016). The Tibetan Plateau (hereafter TP),
covering an area of approximately 2.5 × 106 km2 and with an average
elevation higher than 4000 m, is the largest and highest alpine ecor-
egion in the world and has experienced extraordinary warming in the

past four decades, during which the mean annual temperature has in-
creased at a rate of 0.39 °C per decade (Deng et al., 2017). A growing
number of studies have used ground records and satellite observations
to study the temporal shifts of the VGD and the linkages of those shifts
to climate on the TP (reviewed by Shen et al., 2015b). Shifts in spring
vegetation phenology could induce changes in surface biophysical
processes and further potentially affect the regional and eastern Asian
climate (Zhang et al., 2011).

It is widely recognized that heat accumulation in the preceding
period of time (preseason) is the main trigger of VGD on the cold TP
(e.g., Piao et al., 2011; Shen et al., 2011). Investigators have also ex-
plored the influences on VGD of some other environmental factors, such
as the winter temperature and its relationship to chilling effects (Yu
et al., 2010), preseason precipitation (Shen et al., 2015a), photoperiod,
and sunshine duration (Wang et al., 2015). For example, Yu et al.
(2010) found that winter warming slowed the fulfillment of the chilling
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requirement and consequently delayed spring phenology across the TP
from the mid-1990s to 2006. That report, however, has stimulated a
broad debate about whether there is a strong winter chilling effect on
the TP. Some later studies have argued that warmer winters do not
postpone spring phenology on the TP (e.g., Chen et al., 2015; Cong
et al., 2017; Zhang et al., 2013). Besides the winter temperature, several
studies have emphasized the important impacts of preseason pre-
cipitation on spring phenology in the dry areas of the TP and have
suggested including this factor in climate-driven phenology models to
improve phenology simulations (Shen et al., 2011; Shen et al., 2015a).

In addition to these seasonal climate variables, some recent studies
have emphasized that VGD is affected by the asymmetric impacts of
daytime and nighttime temperatures (Fu et al., 2016; Hanes, 2014; Piao
et al., 2015; Rossi and Isabel, 2017; Shen et al., 2016). Piao et al. (2015)
have suggested that spring phenology is more strongly related with
daily maximum temperature than with daily minimum temperature
over northern middle and high latitudes. Fu et al. (2016), on the basis of
a manipulative experiment, have further indicated that the impact of
daytime temperatures on the leaf unfolding phenology of three tem-
perate tree species is three times that of nighttime temperatures. In
contrast, Shen et al. (2016) correlated VGD with daily maximum and
minimum temperatures, and they found a stronger impact of minimum
temperatures on the TP and hypothesized this as a low-temperature
constraint. These discoveries have been crucial for understanding what
temperature really drives spring phenology on the TP.

Despite this progress, however, it is still unclear how VGD across the
TP is codetermined by temperature at both seasonal (winter vs. spring)
and diurnal (daytime vs. nighttime) time scales and by preseason pre-
cipitation. More importantly, little is known about whether, and to
what extent, including these reported environmental cues might im-
prove phenological models and yield more realistic phenological pre-
dictions for the TP. We found that there have been few previous efforts
to model VGD on the TP, and those limited efforts have been made for
only a few species at several separate sites (Chen et al., 2015) that could
not represent the entire TP. More accurate prediction of VGD requires
the inclusion of essential mechanisms in the phenological model
without overfitting model coefficients (Linkosalo et al., 2008). Previous
studies have revealed correlations between environmental cues and
VGDs, but there remains a gap to incorporate such correlations for an
improvement of VGD predictions on the TP.

To fill knowledge gaps, we first investigated the combined effect of
multiple climate variables on satellite-derived VGD (2001–2015) across
the TP. We then assessed the performance of several existing state-of-
the-art, climate-driven phenological models in predicting VGD. We then
developed a new phenological model involving multiple environmental
cues to improve VGD simulations across the entire TP.

2. Materials and methods

2.1. Retrieving VGDs using satellite observations

VGDs across the TP during 2001–2015 were estimated on the basis
of a time series of normalized difference vegetation index (NDVI) va-
lues. Raw NDVI values were calculated from the nadir bidirectional
reflectance distribution function (BRDF)-adjusted reflectance observed
by the Moderate Resolution Imaging Spectroradiometer (MODIS)
(Product No. MCD43A4; Schaaf et al., 2002). The MCD43A4 dataset has
a composited 8-day and 500-m temporal-spatial resolution and was
available from the website of the National Aeronautics and Space Ad-
ministration (http://reverb.echo.nasa.gov/reverb). We then performed
some necessary preprocessing of the generated raw time-series NDVI
data to reduce noise in the time series: (1) the BRDF-albedo quality flag
(Product No. MCD43A2) was used to identify winter NDVI values
contaminated by the presence of snow or ice; (2) these contaminated
NDVI data were replaced by median values of the uncontaminated
NDVI values between the previous November and the following March

of all years (Zhang et al., 2006); (3) remaining gaps in the time series
were linearly interpolated, and the time series was further smoothed by
a three-point median-value filter, as suggested by the official User
Guide (http://www.bu.edu/lcsc/files/2012/08/MCD12Q2_UserGuide.
pdf).

After preprocessing, the NDVI time-series was fitted to a logistic
function. VGD was then defined as the date when the rate of change of
the curvature of the fitted function reached its first local maximum (for
details, see Zhang et al., 2003). This method actually captures the time
of the initial rapid increase of vegetation greenness and has been widely
validated and used (e.g., Ganguly et al., 2010; Zhang et al., 2006; Zhu
et al., 2012). Only the pixels with obvious seasonal changes were in-
cluded for analysis. These pixels were identified according to the fol-
lowing criteria: the annual NDVI maximum occurred between June and
September; the average NDVI during July–September was larger than
0.1; and the July–September average exceeded 1.2 times the average
NDVI during January–March (Cao et al., 2015; Shen et al., 2014).

2.2. Climate data

The China Meteorological Forcing Dataset was used to analyze the
relationships between VGD and climate factors for each pixel. This
dataset was provided by the Data Assimilation and Modeling Center for
Multi-spheres, Institute of Tibetan Plateau Research, Chinese Academy
of Sciences (Chen et al., 2011; Yang et al., 2010). Air temperature and
precipitation data in that dataset have a spatial resolution of
0.1° × 0.1° and a temporal resolution as short as 3 h. Air temperatures
were produced by merging station meteorological observations made
by the China Meteorological Administration (CMA) and the corre-
sponding Princeton forcing data (Sheffield et al., 2006). Precipitation
data were produced from CMA station observations, Tropical Rainfall
Measuring Mission satellite precipitation analysis data (3B42; Huffman
et al., 2007), and APHRODITE (Asian Precipitation − Highly Resolved
Observational Data Integration Towards Evaluation of Water Re-
sources) precipitation data (Yatagai et al., 2009).

2.3. Statistical analyses

We performed partial least-squares regressions (PLSRs) to evaluate
the influences of multiple climate factors on inter-annual variations of
the VGD. Compared with ordinary least-squares multiple regression,
PLSR is more useful when the sample size is small and there is multi-
collinearity among the independent variables (Wold, 1995). The cli-
matic factors in our PLSR analyses included daytime mean temperature
(Tdaytime) and daily minimum temperature (Tmin) during the preseason
period, preseason accumulated precipitation (AP), and winter daily
mean temperature (Twinter). Tdaytime was calculated as the mean of the
four temperatures recorded during successive 3-h time intervals from
8:00 AM to 8:00 PM The duration of the preseason used to calculate
Tdaytime was determined to be the period of time preceding the multi-
year average VGD during which the VGD was most correlated with
Tdaytime. We constrained this length of time to be 15–90 days in incre-
ments of 15 days to suppress the potential influence of occasionally
abnormal temperatures. The preseason length for Tmin was determined
in a similar way. The time interval for calculating AP extended from 1
January to the multiyear average VGD. Twinter was calculated as the
daily mean temperature from October 1 of the previous year to January
31 of the given year.

We quantified the influence of each climate factor on the VGD on
the basis of two evaluation indicators from the PLSR analyses. One was
the model coefficient (MC) in the regression model. A positive or ne-
gative MC for a climate factor indicated that the climate factor was
positively or negatively correlated, respectively, with VGD. The other
was the variable importance on PLSR projection (VIP), which is a me-
tric of the ability of each climate factor to explain the variance of the
VGD (Yu et al., 2010). A climate factor with a VIP score greater than 1
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