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ARTICLE INFO ABSTRACT

Keywords: Autumn phenology can regulate climate-biosphere interactions and net primary production within the eco-
Autumn phenology system. However, studies modeling spatiotemporal variations in leaf coloring date (LCD) remain limited,
Modeling especially for species-specific phenology on a continental scale. Aiming to simulate spatiotemporal variations in

Leaf coloring date

LCD in three widespread tree species (Ulmus pumila, Fraxinus chinensis, and Robinia pseudoacacia) across China,
Empirical orthogonal function

we used phenological observation records acquired from the China Phenology Observation Network (CPON)
during 1963-2010 to establish and compare three LCD models (multiple regression (MA), temperature-photo-
period (TP), spring-influenced autumn (SIA)). Subsequently, we simulated the mean LCD of the three species
using the most effective model and examined the effect of geographical factors (i.e., latitude, longitude, and
altitude) on LCD through multiple regression analysis. Empirical Orthogonal Function (EOF) analysis was ap-
plied to identifying the most extensive and influential spatial modes of LCD variability and how they changed
with time. The results showed that: (1) The LCD of F. chinensis was fitted better with the statistical model using
monthly temperature as the independent variables (MR model). The LCD of F. chinensis was delayed by a
temperature rise in August and September, but advanced by a temperature rise in May and June. The LCD of U.
pumila and R. pseudoacacia was fitted better with the TP and SIA models, in which the photoperiod determined
the date when the cold temperature started to accumulate. (2) The simulated mean LCD of U. pumila, F. chinensis,
and R. pseudoacacia was October 6, October 16 and October 22, respectively. Latitude, longitude, and altitude
had a significant influence on mean LCD of the three tree species. With increasing latitude and altitude, the LCD
of all three species became earlier. However, the impact of longitude on the mean LCD varied among species. (3)
For all the three species, the first EOF mode presented a consistent pattern of LCD variability across space,
suggesting that an earlier or later LCD occurred simultaneously in the whole China. Meanwhile, the second EOF
mode exhibited contrary signals of LCD variability in the north and south for F. chinensis and R. pseudoacacia.
Over the past 50 years, the LCD of all the three species has delayed. The delaying trend revealed by the first EOF
mode was 1.25 (p < 0.01), 0.21 (p < 0.01), and 0.53 days/decade (not significant) for U. pumila, F. chinensis
and R. pseudoacacia, respectively. These results provide the basis for a better understanding of the phenology
process in autumn and how it responds to climate change.

1. Introduction

Phenological changes have dramatic effects on carbon balance,
nutrient cycles, biodiversity and net primary production in ecosystems
(Cleland et al., 2007; Ge et al., 2014b), and control many feedbacks of
the climate system (Ge et al., 2014a; Richardson et al., 2013). Several
studies have concluded that autumn phenology might have a greater
effect than spring phenology on the extension of growing season length
(Garonna et al., 2014; Liu et al., 2016b) and changes in net ecosystem
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productivity (Wu et al., 2013). Thus, a comprehensive understanding of
spatiotemporal patterns of autumn phenology could help understand
structure and function of the ecosystem in autumn and to predict future
ecosystem dynamics.

Phenological models play a critical role in quantifying climate-
biosphere interactions (Visser, 2016; Xin, 2016). Through phenological
models and meteorological data, the phenophases and their spatio-
temporal patterns could be simulated accurately (Aono and Omoto,
1990; Bluemel and Chmielewski, 2012; Chuine, 2000). Compared with
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spring phenological models, models regarding autumn phenology re-
main limited, mainly due to lack of knowledge about the phenology
process and its mechanism (Olsson and Jonsson, 2015). Many external
environmental factors, such as temperature, drought, ozone, nutrient
deficiency, and pathogen infection, may have considerable influences
on the autumn phenology process (Lim et al., 2007), and the influences
may differ across species and ecosystems (Gill et al., 2015). Therefore,
existing autumn phenology models based either on observations of in-
dividual trees or remote sensing have different parametric equations
(Jeong and Medvigy, 2014).

The existed autumn phenological models are mostly set up ac-
cording to several main influencing factors. A great number of studies
put forward that temperature is the most important factor impacting
autumn phenology (Chen and Xu, 2012; Ge et al., 2015; Menzel, 2003),
because cold temperature may lead to water freezing in leaves and force
deciduous trees to shed their leaves to prevent damage (Jeong and
Medvigy, 2014). However, the start date of leaf coloring is determined
by a specific threshold of minimum temperature (Estrella and Menzel,
2006) or accumulated cold temperature (Yu et al., 2016) according to
different hypotheses. Photoperiod is another factor influencing autumn
phenology (Fracheboud et al., 2009), especially in regions at high la-
titudes (Gill et al., 2015; Way and Montgomery, 2015), which can affect
the formation of leaf abscission meristems and the ability of plants to
tolerate low temperature (Korner and Basler, 2010). Moreover, pre-
cipitation may improve soil moisture content and change the photo-
synthetic efficiency by affecting the plant carboxylation reaction, and
further lead to shifts in autumn phenology (Zu and Yang, 2016). Re-
cently, spring phenology has been found to exert a significant influence
on the timing of autumn phenology (Fu et al., 2014; Liu et al., 2016a),
and is considered in a recent phenological model (Keenan and
Richardson, 2015).

To date, many autumn phenological models are developed on the
basis of few data from limited sites (Jeong et al., 2013). Thus, the es-
tablished models may have great errors when simulating phenology in
broad geographical regions (Basler, 2016; Delpierre et al., 2009). Sev-
eral studies have made systematic comparisons among various autumn
phenology models in Europe (Olsson and Jonsson, 2015) and America
(Jeong and Medvigy, 2014), and have found that temperature and
photoperiod can explain the variation in autumn phenology for most
species, but that the parameters may vary greatly among species.
However, no previous study has focused on the species-specific autumn
phenology model up to date in China.

In order to compensate the above shortage and fill this knowledge
gap, this study used three phenology models for simulating leaf coloring
date (LCD) of three cosmopolite tree species (Ulmus pumila, Fraxinus
chinensis, and Robinia pseudoacacia) across a large part of China. Based
on the optimal model, we simulated the LCD variations in the three
species over the past 50 years and analyzed their spatiotemporal pat-
terns through empirical orthogonal function (EOF) analysis. The overall
aim of the study was to explore the spatiotemporal pattern of autumn
phenological change in typical species in China and try to discuss the
mechanism of autumn phenology process in response to climate
change.

2. Materials and methods
2.1. Data source

The three plant species (U. pumila, F. chinensis, and R. pseudoacacia),
selected for study all have strong tolerance to severe environments,
such as drought conditions and alkaline or saline soils (Solla et al.,
2005; Wu et al., 1994). These species are widespread and can reflect the
autumn phenological changes over large regions in China. Data on the
distribution of U. pumila and F. chinensis (Fig. 1) were obtained from the
Atlas of Woody Plants in China (Fang et al., 2009). The distribution of
R. pseudoacacia in China was determined according to the Flora of
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China (Wu et al., 1994) and Chinese Virtual Herbarium (CVH, www.
cvh.ac.cn).

The LCD data of the three species were obtained from China
Phenological Observation Network (CPON) (Table A.1-A.3), which
were mainly observed at sites located in eastern China (Fig. 1). The LCD
for an individual tree was defined as the date when 99% of its leaves
had visibly changed color. The phenological observations were inter-
rupted during several periods (Fig. 2), so the average number of records
per year was 8.6, 8.2, and 9.7 for U. pumila, F. chinensis, and R. pseu-
doacacia, respectively.

The meteorological data were downloaded from the China me-
teorological data service center (http://data.cma.cn/). For fitting the
phenology model, we used daily air temperature data obtained near
CPON sites from 1963 to 2010. For LCD simulation, we utilized a
gridded dataset of daily surface air temperature at 0.5° X 0.5° resolu-
tion during 1961-2012. This dataset was generated by interpolating the
data from 2472 meteorological stations using ANUSPLIN software and
thin plate spline method.

2.2. Methods

2.2.1. Model calibration and validation

Three autumn models were applied to simulate the LCD. The first
one was a multiple regression (MR) model. Estrella and Menzel (2006)
found that LCD was delayed by a temperature rise in August and Sep-
tember but advanced by a temperature rise in May and June. Based on
this empirical relationship, the MR model was built as a multiple linear
regression function between autumn phenophase and monthly tem-
perature:

Pi=aTls + bTy+ cT; + dTy + eTy + € (@D)]

where a, b, c, d, and e are model parameters, Ts, T, T, Tg, and To are
the mean temperature in May, June, July, August, and September, re-
spectively, and ¢ is a constant term.

The second model was a process-based model based on temperature
and photoperiod (TP model), which defines a coloring state CDD(d) for
each day to depict the progress of leaf coloring (Delpierre et al., 2009).
In the TP model, CDD(d) is determined by accumulated cold tempera-
tures and regulated by daily photoperiod [Eq. (3)]. For some species,
the photoperiod not only decides the date when cold temperatures
begin to accumulate [Eq. (2)], but also influences the cold degree sum
effect [Eq. (4)]. The combined effect of temperature and photoperiod is
shown as:
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where iCDD(d) represents the accumulated coloring state. The cold
temperatures below a limit T, are accumulated when the day length
becomes shorter than Pg,,. P(d) and T(d) represent the daily day length
and mean temperature, respectively. f[P(d)] is a function of P(d), which
suggests that photoperiods shorter than the Py, threshold may weaken
the cold-degree effect. Two exponent indices x and y (take any of 0, 1,
2) are used to measure the possible effects of temperature and day
length. The day length P(d) depends on the day of the year (DOY) and
latitude (L) (Forsythe et al., 1995).

The appearance of LCD (d) is recognized when iCDD achieves a

threshold Y, given by:
iCDD(d) > Yerit %)

The third autumn model was a spring-influenced autumn (SIA)
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