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a  b  s  t  r  a  c  t

Quantifying  global  carbon  and  water balances  requires  accurate  estimation  of  gross  primary  production
(GPP)  and  evapotranspiration  (ET),  respectively,  across  space  and  time.  Models  that  are based  on  the the-
ory of light  use  efficiency  (LUE)  and  water  use  efficiency  (WUE)  have  emerged  as  efficient  methods  for
predicting  GPP  and  ET,  respectively.  Currently,  LUE  and  WUE  estimates  are  obtained  from  biome-specific
look-up  tables  and  coarse  resolution  remote  sensing  data  with  large  uncertainties.  The  major  objective  of
this study  was  to  parameterize  eddy  covariance  tower-based  ecosystem  LUE  (ELUEEC), defined  as  the ratio
of tower-based  GPP  (GPPEC)  to photosynthetically  active  radiation  (PAR),  and  ecosystem  WUE  (EWUEEC),
defined  as  the ratio  of  GPPEC to  tower-based  ET (ETEC), using  the  Moderate  Resolution  Imaging  Spectrora-
diometer  (MODIS)-derived  enhanced  vegetation  index  (EVI)  for predicting  maize  (Zea  mays  L.)  GPP and  ET,
respectively.  Three  adjacent  AmeriFlux  maize  sites  with  different  rotations  (continuous  maize  vs. annual
rotation  of  maize  and  soybean,  Glycine  max L.)  and  water  management  practices  (rainfed  vs.  irrigated)
located  near  Mead,  NE, USA  were  selected.  The  EVI  tracked  the  seasonal  variations  of ELUEEC (R2 = 0.83)
and EWUEEC (R2 =  0.74)  across  sites,  indicating  that EVI  can  be explicitly  used  as  a measure  of  ELUEEC and
EWUEEC. The  predicted  GPP  (GPPELUE) using  the  parameterized  ELUE  model  correlated  well  with  GPPEC

(slope  =  1.0,  R2 = 0.83,  and  RMSE  =  2.85  g C m−2 d−1)  and  was  significantly  improved  when  compared  to
widely  used  models  that  estimate  GPP  by integrating  EVI and  climate  variables  (Greenness  and  Radiation,
Temperature  and  Greenness,  and Vegetation  Index)  and the standard  MOD17  GPP product.  Similarly,  the
predicted  ET  (ETEWUE) using  the  parameterized  EWUE  correlated  well  with  ETEC (slope  =  1.02,  R2 = 0.62,
and  RMSE  =  0.83  mm  ET−1) and  was  significantly  improved  when  compared  to  the  standard  MOD16  ET
product.  Preliminary  data  demonstrate  that  ELUE  and  EWUE  can  be  parameterized  using  EVI,  offering
new  methods  for predicting  GPP  and  ET.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Accurate estimation of gross primary production (GPP) and
evapotranspiration (ET) across space and time is crucial to quantify
global carbon and water balances, respectively. Eddy covariance
(EC) systems can measure carbon uptake and water losses by
ecosystems at the landscape level (Baldocchi et al., 2001). How-
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ever, these EC measurements are representative of fluxes only from
within the EC tower footprint. Satellite remote sensing approach
can complement the limited coverage of GPP and ET estimates
by EC systems. Consequently, a variety of methods that leverage
remotely-sensed products to predict GPP and ET have been devel-
oped and validated using EC data.

Current remote sensing estimations of GPP fall into two broad
approaches. The first approach is to estimate GPP based on the
theory of light use efficiency (LUE) proposed by Monteith (1972).
Several existing broad-scale carbon flux models such as Moderate
Resolution Imaging Spectroradiometer Photosynthesis, MODIS-
PSN (Running et al., 2004), Carnegie–Ames–Stanford Approach,
CASA (Potter et al., 1993), Global Production Efficiency Model, GLO-
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Fig. 1. Seasonality and interannual dynamics of tower-based gross primary production (GPPEC) and evapotranspiration (ETEC) at three maize sites.

PEM (Prince and Goward, 1995), Vegetation Photosynthesis Model,
VPM (Xiao et al., 2004), and Eddy Covariance Light Use Efficiency
Model, EC-LUE (Yuan et al., 2007) follow the fundamental GPP esti-
mation method (Monteith, 1972) as:

GPP = ε × fAPAR × PAR (1)

where � is light use efficiency, PAR is photosynthetically active radi-
ation, and fAPAR is the fraction of PAR absorbed by vegetation. In
Eq. (1), separate estimations of fAPAR and � are required to com-
pute GPP for the current LUE-based models. A major limitation for
this GPP estimation approach is that direct measurements of LUE
are not available at the landscape scale. Conclusive results have not
been achieved to directly compute LUE even by using narrow-band
vegetation indices such as photochemical reflectance index, PRI
(Gamon et al., 1992) and solar-induced chlorophyll fluorescence,
SIF (Parazoo et al., 2014). Even though the PRI performance is good
at leaf or plant levels, it is problematic at the ecosystem level when
using MODIS data (Moreno et al., 2012; Tan et al., 2013). Further,
parameterization of LUE is difficult as it is influenced by vegetation
types (Turner et al., 2003), seasonality and plant phenology (Jenkins
et al., 2007), and environmental stresses (Ruimy et al., 1995). Due to
these reasons, maximum LUE values have been specified for a lim-
ited number of biome types and are available in vegetation-specific
look-up table. In most LUE-based models, a constant potential or
maximum LUE value is used and then down-regulated by environ-
mental constraints (Running et al., 2004).

Differences in the GPP estimates from LUE-based models are
generally due to differences in the determination or selection of
LUE and the use of environmental stress scalars. The second remote
sensing GPP estimation approach is the development of empiri-

cal/statistical models based on tower-based GPP (GPPEC), climate
variables, and remotely-sensed vegetation indices (Gitelson et al.,
2006; Sims et al., 2008; Wu et al., 2010) and most recently based
on GPPEC and SIF (Guanter et al., 2014; Wagle et al., 2015c).

Remote sensing estimations of ET also fall broadly into two
approaches. The first approach is to estimate ET using physical
models based on the surface energy balance (SEB) concept (Gillies
et al., 1997). Several SEB models have been developed in past two
decades to estimate large-scale ET (Allen et al., 2007; Bastiaanssen
et al., 1998; Roerink et al., 2000; Senay et al., 2013; Su, 2002).
Those SEB models typically estimate sensible heat flux (H) from
the difference between ground-based air temperature (Ta) and
satellite-based land surface temperature (LST). The lack of 1:1 cor-
respondence between LST and aerodynamic surface temperature
poses a number of difficulties in estimating H (Kustas and Norman,
1996) and ultimately reliable ET estimates. Further, relatively com-
plex computation of several land surface physical parameters and
turbulent heat fluxes, and too many required parameters with
detailed information in physically-based models can cause more
inconveniences and uncertainties when data are not readily avail-
able (Liou and Kar, 2014). Several surface variables like land surface
temperature, surface albedo, soil moisture, emissivity, fractional
vegetation cover, leaf area index can significantly affect the precise
partition of energy components and consequently the accuracy of
SEB models. The second remote sensing ET estimation approach is
the development of empirical/statistical models (Choudhury et al.,
1994) based on tower-based ET (ETEC), vegetation indices, and cli-
mate variables. Increasing number of flux towers and availability
of remote sensing vegetation indices offer a tool for upscaling of
ecosystem level measurements of ET over large areas (Glenn et al.,
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