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a  b  s  t  r  a  c  t

Evapotranspiration  (ET)  is  an  important  component  of micro-  and  macro-scale  climatic  processes.  In
agriculture,  estimates  of ET  are  frequently  used  to monitor  droughts,  schedule  irrigation,  and  assess
crop  water  productivity  over  large  areas.  Currently,  in  situ measurements  of  ET  are  difficult  to  scale  up
for regional  applications,  so  remote  sensing  technology  has  been  increasingly  used  to  estimate  crop  ET.
Ratio-based  vegetation  indices  retrieved  from  optical  remote  sensing,  like  the Normalized  Difference
Vegetation  Index  (NDVI),  Soil  Adjusted  Vegetation  Index,  and  Enhanced  Vegetation  Index  are  critical
components  of  these  models,  particularly  for the  partitioning  of  ET  into  transpiration  and  soil  evapora-
tion.  These  indices  have  their  limitations,  however,  and can induce  large  model  bias  and  error.  In this
study,  micrometeorological  and  spectroradiometric  data  collected  over two  growing  seasons  in cotton,
maize,  and rice  fields  in  the  Central  Valley  of California  were  used  to identify  spectral  wavelengths  from
428  to  2295  nm  that produced  the  highest  correlation  to and  lowest  error  with  ET,  transpiration,  and
soil  evaporation.  The  analysis  was  performed  with  hyperspectral  narrowbands  (HNBs)  at  10  nm intervals
and multispectral  broadbands  (MSBBs)  commonly  retrieved  by Earth  observation  platforms.  The  study
revealed  that  (1) HNB  indices  consistently  explained  more  variability  in  ET  (�R2 = 0.12),  transpiration
(�R2 = 0.17),  and  soil evaporation  (�R2 =  0.14) than  MSBB  indices;  (2)  the  relationship  between  transpi-
ration  using  the ratio-based  index  most  commonly  used  for ET modeling,  NDVI,  was  strong  (R2 =  0.51),  but
the hyperspectral  equivalent  was superior  (R2 = 0.68);  and  (3)  soil evaporation  was  not  estimated  well
using  ratio-based  indices  from  the literature  (highest  R2 = 0.37),  but  could  be  after  further  evaluation,
using  ratio-based  indices  centered  on 743  and 953  nm  (R2 =  0.72)  or 428  and  1518  nm  (R2 =  0.69).

© 2015  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Evapotranspiration (ET) is the process by which mass/energy
is exchanged between the surface and atmosphere via evaporating
moisture from soil, open water, and wet plant canopies or transpir-
ing moisture from photosynthesizing canopies (Chapin et al., 2011).
It is therefore a critical component of several physical and biologi-
cal processes at the cellular, leaf, plant, canopy, and landscape scale
(Katul et al., 2012). In most regions of the world, water loss (the ratio
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of ET to precipitation) is increasing in response to global warm-
ing (Huntington, 2006). This has particularly strong implications
for irrigated agriculture, which currently accounts for 70% of the
world’s surface water and groundwater withdrawals and whose
demand is expected to increase by 22% in 2050 (Rosegrant et al.,
2009). The increase in demand from irrigated agriculture combined
with increasing demand from other competing and expanding
sectors, means that better agricultural water management is neces-
sary. Effective water management includes improved monitoring,
assessment, and forecasting of crop ET, in order to develop and
evaluate water-saving strategies (Evans and Sadler, 2008). In situ
estimates of crop ET are difficult to extrapolate to scales for regional
processes and applications (Jung et al., 2009), so Earth observa-
tion remote sensing-based ET models calibrated/validated with
in situ data are increasingly used (Dam et al., 2006). These mod-
els, however, have bias and error, particularly with regards to the
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partitioning of ET into its components (transpiration and soil evap-
oration) (Gowda et al., 2008).

Evapotranspiration modeling approaches involving Earth obser-
vation remote sensing data are reviewed in Biggs et al. (2015),
Courault et al. (2005), Diak et al. (2004), Glenn et al. (2007),
Kalma et al. (2008), Kustas and Norman (1996), and Wang and
Dickinson (2012). These models can be categorized as vegetation-
based, temperature/energy balance, and scatterplot approaches.
Vegetation-based methods estimate ET or its energy equivalent
(LE: latent heat) as a function of ratio-based vegetation indices
derived from optical Earth observation, the atmospheric demand
for water vapor (PET: Potential Evapotranspiration) or vegeta-
tion specific analog (crop reference ET: Allen et al., 1998), and
temperature/moisture constraints. PET is estimated using either
the Penman–Monteith (Leuning et al., 2008; Mu et al., 2011,
2007; Nishida et al., 2003) or Priestley–Taylor (Fisher et al., 2008)
equations. Temperature/energy balance approaches estimate tem-
perature from thermal infrared remote sensing, which is either
used to estimate LE directly (Simplified Surface Energy Balance:
Senay et al., 2007) or indirectly as a residual of the energy bal-
ance equation. The two-source energy balance approaches (Two
Source Energy Balance – Norman et al., 1995 and Atmosphere-Land
Exchange Inverse – Anderson et al., 1997) use a ratio-based index to
separate land surface temperature into canopy and soil heat com-
ponents from which transpiration and evaporation are estimated,
respectively. Scatterplot methods (Gillies et al., 1997; Moran et al.,
1994) are a close relative of temperature/energy balance methods.
Latent heat is bounded by vertices of a triangle or trapezoid that
represent fully transpiring (high ratio-based index, “cold” temper-
ature) or low-transpiring vegetation (low ratio-based index, “hot”
temperature) over an area of interest.

Whether vegetation-based, temperature/energy balance, or
scatterplot methods are used, ratio-based indices, derived from
the optical range of remote sensing, play a critical role in crop ET
models (Glenn et al., 2010), particularly for ET partitioning (Wang
et al., 2014). The primary indices used are the Normalized Dif-
ference Vegetation Index (NDVI – Rouse, 1974) and Soil Adjusted
Vegetation Index (SAVI – Huete, 1988) from which the fraction
of photosynthetically active radiation intercepted by the canopy
(FIPAR) is computed. These indices are derived from visible red
and near infrared (NIR) remote sensing reflectance representing
several convolved wavelengths (i.e. MSBBs: multispectral broad-
bands), because plant material strongly absorbs visible red light
and scatters NIR due to the spectral properties of plant chlorophyll,
accessory pigments, and the alignment of cell walls (Ollinger, 2011).
SAVI is used together with or in place of NDVI, because it is less
sensitive to soil background and saturation in dense canopies. The
Enhanced Vegetation Index (EVI) (Huete et al., 2002) has become
a widely used alternative to SAVI, because it incorporates a blue
reflectance broadband, which reduces atmospheric effects that
impact NDVI and SAVI. The Normalized Difference Water Index
(NDWI) and Global Vegetation Moisture Index exploit leaf water
absorption in the Shortwave Infrared (SWIR) and are the most com-
monly used non-red-NIR indices for ET estimation (Guerschman
et al., 2009; Lu and Zhuang, 2010).

Hyperspectral remote sensing, unlike MSBB remote sensing,
involves hundreds of spectral narrowbands that are sensitive to
distinct biophysical and biochemical characteristics, and facili-
tate atmospheric correction and the unmixing of heterogeneous
surfaces with “idealized” spectra (Goetz, 2009). Although hyper-
spectral remote sensing has been used for agricultural modeling
applications that require direct or relative estimates of light-
absorbing plant pigments, plant water content, or dry plant
residues (Ustin et al., 2004), its application in ET modeling is rela-
tively unstudied (see Rodriguez et al., 2011 for a review of relevant
opportunities).

There is a general lack of studies that utilize MSBB ratio-based
vegetation indices (MSVIs) other than NDVI, SAVI, EVI, NDWI, and
more importantly, HNB ratio-based vegetation indices (HVIs) in
crop ET models. This paper employs empirical methods and in situ
spectroradiometric and eddy covariance/surface renewal data to
(1) identify potentially useful MSVIs and HVIs over the entire optical
range for estimation of crop ET and its components (transpira-
tion and evaporation) and (2) compare these indices with existing
MSVIs and HVIs from the literature to inform the ET modeling com-
munity, and more importantly, upcoming global mapping imaging
spectroradiometric missions, such as the Hyperspectral Infrared
Imager (http://hyspiri.jpl.nasa.gov/).

2. Methods

2.1. Study area

In 2011 and 2012, field campaigns were conducted to estimate
ET using field and remote sensing methods in the Central Valley
of California – an important agro-ecosystem of the United States
(CDFA, 2013). Spectroradiometric and ancillary biophysical data,
including crop height, leaf area index, and FIPAR were collected
in the fetch of seven micrometeorological stations during three
visits in the summer growing season coinciding with the sprout-
ing (May–June), flowering/tasseling (June–July), and senescence
(July–August) stages of crop growth (Fig. 1 and Table 1). For two
of the stations (Davis and on Twitchell Island), spectroradiomet-
ric and ancillary biophysical data were collected for both 2011 and
2012, because they were operational for multiple growing seasons.
The other stations only operated over one growing season. Spec-
troradiometric and ancillary biophysical data were collected on
the same day of each visit. Micrometeorological stations recorded
weather and energy balance data at regular intervals throughout
the growing season.

The fetch consisted of soil, water, and vegetation, which con-
ditioned air parcels recorded as the turbulent energy flux by the
station (Schuepp et al., 1990). The fetch extent was  defined by the
dominant daytime summer wind direction and generally spanned
the length of the field adjacent to each station (<450 m). Each
station was  located in large, flat, irrigated, and homogenous fields.
The fields under measurement consisted of three widely cultivated
and water-intensive field crops in California: cotton, maize, and
rice. Each field represented diverse soil types and climatology of
the Central Valley.

2.2. Spectroradiometric data and processing

Field spectra were collected using an Analytical Spectral Devices
(ASD) portable spectroradiometer (Field Spec Pro 3: www.asdi.
com). The Field Spec Pro 3 detects light scattered by a canopy over
the optical range (350–2500 nm) at 1–10 nm intervals depending
on the spectral position. Light is captured with a fiber optic cable
and was constrained in this study by an 18◦ field of view (FOV)
fore-optic. The fore-optic was  mounted to a pole pointed at nadir
and at a fixed height (1.5 m for cotton and rice and 2.5 m for maize)
±2 h solar noon to minimize inconsistencies due to canopy shadow
and sun angle. The FOV corresponded to 1 m2 quadrats over which
ancillary biophysical data was  measured on the same day. Spec-
tra were collected for ten evenly spaced quadrats in the footprint
of each micrometeorological station. Approximately five replicates
were collected at random locations in the quadrat. A replicate spec-
trum consisted of Field Spec Pro internally averaged spectra (30 for
optimal environmental conditions and 40 for sub-optimal environ-
mental conditions).
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