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The flow of non-Newtonian fluids is of interest in many biological and industrial applications, including nano-
fluids. Most of the papers of the literature on turbulent non-Newtonian fluids focused the attention on visco-
elastic fluids. In order to make accurate and low cost prediction of turbulent inelastic non-Newtonian fluids, a
RANS Generalised Newtonian Fluid (GNF) turbulence model, based on the exact equations for the turbulent
variables, is required. In a previous paper of the same authors the exact equations for the turbulent kinetic
energy and the dissipation rate have been derived in a two-dimensional (2D) domain, through the introduc-
tion of an apparent viscosity equation. The aim of the present paper is to extend the approach to a three-
dimensional (3D) domain, giving the full mathematical demonstration of the exact equations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The term “non-Newtonian” fluid is very general, including a wide
range of fluids with different constitutive equations. The flow of non-
Newtonian fluids is largely present in industrial applications and bio-
logical problems, as slurries flow in pipes, wastewater treatment and
aseptic food processing. Several theoretical solutions and numerical
simulations found in the literature are related to laminar flow of
non-Newtonian fluids, including two of the first author [1,2]. The
most important example of non-Newtonian fluid in biology is blood.
Besides that the flow is laminar in most of the vascular network,
turbulent conditions may occur in some regions, e.g. bifurcations,
producing the formation of atherosclerotic plaques, in association to
biochemical factors [3]. Turbulent flow can be encountered in other
conditions, like sewage transport, drilling hydraulics and processes
with high heat transfer rate. Turbulent flow increases the heat trans-
fer coefficient in the aseptic food processing, due to the large temper-
ature difference, reduces the viscosity and leads the transition from
laminar to turbulent flow [4].

The viscoelastic ones are among the most investigated non-
Newtonian fluids, because of the drag reduction, called Tom's effect
[5]. This feature was studied numerically in a wide number of papers
employing different constitutive relations to describe the viscoelastic
behaviour of the fluid. The FENE-P model is one of the most popular,
and several Direct Numerical Simulations (DNS) were carried out to
explain the phenomenon of drag reduction [6]; finding relations

between flow and fluid rheological parameters at high, medium and
low drag regime [7]; studying the zero-pressure gradient flow in tur-
bulent boundary layers where the polymer is homogeneously distrib-
uted in the solvent [8]; and, finally, investigating the influence of the
polymers on the turbulence [9]. The Giesekus and the FENE-P models
were employed to predict the drag reduction. Examples can be found
in [10,11], where simulations with both models were performed, and
in [12], where numerical results were compared to Particle Image
Velocimetry (PIV) experiments.

DNS is a powerful instrument but its application is limited by com-
putational resources. This is the reason why many DNS simulations
are limited to low and medium Reynolds numbers. The models pro-
posed by Poreh and Hassid [13], and Durst and Rastogi [14], were
based on the approach of modifying the damping function of the
low Reynolds number k−ε model of Jones and Launder [15]. Others
proposals can be found in [16], where a zero-equation model for the
eddy viscosity was suggested, or in [17], where closures were devel-
oped for turbulent correlations among flow and polymer conforma-
tion variables, incorporating a single-point k−ε model.

A mechanistic model for polymers was suggested in [18], where
the dominant forces on a polymer in turbulent flow were argued to
be elastic and centrifugal. The corrected velocity profiles, resulting
from the dimensional analysis in the turbulent boundary layer, were
compared favourably with the experiments of [19]. Due to the com-
plexity of the viscoelastic model, other authors proposed a simpler
constitutive equation, inspired by the GNF model. The elongation vis-
cosity was modelled as function of the magnitude of the strain rate
and the rotation rate tensors [20], and function of the third and the
second invariant of the rate-of-strain tensor [21]. DNS results are pro-
vided in order to show the capability of the models to reproduce a
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drag reduction. The role of the stress anisotropy was studied experi-
mentally in [22] with a Laser Doppler Velocimetry (LDV) and numer-
ically by means of DNS. The results of two different constitutive
equations were compared showing that the model characterised by
a single scalar viscosity function of the second and the third invariant
of the rate of shear tensor had a good qualitative agreement with
the measurements. An approach similar to that adopted in [21] was
followed in [23]. By choosing a Bird–Carreau constitutive equation
for the viscosity, depending on the second and the third invariant of
the rate of shear tensor, it was showed qualitatively that the introduc-
tion of the third invariant of the rate of strain tensor contributed to an
increase of the viscous diffusion and of the turbulent dissipation rate.
The same constitutive equation was employed in [24], in order to
derive a low Reynolds number k−ε model for drag reducing fluids.
An algebraic equation was proposed to correlate the instantaneous vis-
cosity to the dissipation ratewhile the average viscosity and the dissipa-
tion rate were correlated through a normal logarithmic probability
distribution. Applying the dimensional analysis it was possible to ne-
glectmany terms in the transport equations. Thefinal turbulent dissipa-
tion rate equation was written in non-conservative form because the
explicit time derivative of the average viscosity was present. The
model was completed in [25] on the basis of that proposed in [26].
The values of the parameters and the forms of the damping functions
were derived taking into account viscometric and elastic near-wall ef-
fects. Simulations of pipeflowviscoelastic polymer solutionswere com-
pared to experimental data. The model was improved successively in
several other papers. The new stress, i.e. the cross-correlation between
the fluctuating viscosity and the fluctuating rate of strain, was added as
proportional to the mean velocity gradient [27]. The same model was
used modifying the damping functions and the coefficients [28], while
the Launder–Sharma model [29] was used in [30], instead of that of
Nagano-Hishida [26]. A full Reynolds stress model was developed in
[31], comparing the performances of the new model with those of
[27] and other experimental data. Removing the dependence of the ve-
locity gradient on the friction velocity in the recirculation zone, the
Reynolds stress model performed better than the k−ε one.

Few numerical investigations dealt with turbulent flow of pseudo-
plastic (shear-thinning) and dilatant (shear-thickening) fluids be-
cause of the lack of models with one or two point closure. Among
the investigators who performed DNS, Rudman and Blackburn [32],
used the Spectral Element-Fourier Method (SEM) in duct flow, com-
paring the results of a power law fluid with small consistency index
and a Herschel–Bulkley fluid with the experimental data. A turbulent
model for a non-Newtonian power law fluid was developed in [33], in
analogy to the turbulent viscosity, determining the temperature dis-
tribution for soybean milk flowing inside a tubular heat exchanger.

Turbulentflowof non-Newtonianfluids is also important in themed-
ical field. A model was developed in [34] to predict the turbulent flow of
a power-law fluid in a bio-reactor for anaerobic digestion with the clas-
sical k−ε model and the power-law viscosity. Equations for k−ε were
derived in [35,36] for a power-law and a Herschel–Bulkley fluid using
the apparent viscosity of a non-Newtonian fluid in the RANS equations,
showing some agreement with the previous empirical correlations.

Another very important field of application is related to nanofluids,
which are dilute liquid suspensions of nanoparticles with at least one
of their critical dimensions smaller than about 100 nm [37]. Many ex-
perimental studies confirmed that the viscosity of these fluids is tem-
perature and shear rate dependent. In some works the viscosity seems
to have a shear-thinning behaviour [38–45], while in others a shear-
thickening one [46]. Few numerical simulations were carried out in
laminar flow [47–50]. An interesting model was developed in [51],
where the effect of the nanoparticle/base-fluid relative velocity is de-
scribed more mechanistically than in the dispersion models, although
the fluid was considered Newtonian.

Besides the many applications of non-Newtonian fluids in turbu-
lent flow, no paper derived exactly the turbulent dissipation rate

equation for an inelastic GNF model. In the previous paper of the
same authors [52], the exact equation for the turbulent dissipation
rate in conservative form was derived in a two-dimensional (2D)
domain.

The present work presents the extension to a three-dimensional
(3D) domain of the exact conservation equations, assuming viscosity
as dependent only on the second invariant of the shear rate, because
the third invariant is related to the extensional viscosity, which is not
of interest for inelastic non-Newtonian fluids. It can be remarked,
though, that this hypothesis may be reasonable for real fluids, as
stated in [53], due to some evidence. The equation of the turbulent
dissipation rate, ε, is obtained in this work by the equation for the
apparent viscosity, introduced in [52] and extended here to a 3D do-
main, which does not require a constitutive link between apparent
viscosity and shear rate, and does not need any hypotheses on the de-
pendence of the turbulent dissipation rate on the fluctuating part of
the rate of strain tensor, as required in [14].

The present paper presents the derivation of the equations for the
average momentum, the turbulent kinetic energy and then the deri-
vation of the equations for the rate of shear tensor and the shear-
rate. The differential equation for the apparent viscosity, which al-
lows deriving the equation for the dissipation rate in conservative
form, is obtained with the same approach of [52]. The method used
in this work allows classifying each term as transport, production or
dissipation one.

2. Conservation equations of mass, momentum and turbulent
kinetic energy

The present analysis is carried on for a GNF flow, where the appar-
ent viscosity is function of the shear-rate, _γ , only, defined as

_γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; ð1Þ

being Sij the component of the rate of strain tensor

Sij ¼
1
2

∂ui

∂xj
þ ∂uj
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 !
−1

3
∂uk

∂xk
δij: ð2Þ

We will use the following variable S, as shear-rate, in the rest of
the paper

S ¼
ffiffiffiffiffiffiffiffiffiffi
SijSij

q
¼ _γ=

ffiffiffi
2

p
: ð3Þ

The stress tensor is given by

Tij ¼ −pδij þ 2μappSij; ð4Þ

where p is the static pressure.
The conservation equations of the mean variables are

∂Uk

∂xk
¼ 0; ð5Þ

for the mass, and

ρ
∂Ui

∂t þ ρUk
∂Ui

∂xk
¼ − ∂P
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þ ∂
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2μappSik þ TR
ik þ Tμ
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� �
; ð6Þ

for the momentum.
The Reynolds stress tensor is defined as

TR
ij ¼ −ρu′i u′j ; ð7Þ
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