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a b s t r a c t

High-frequency eddy-covariance measurements of net ecosystem CO2 exchange (NEE) with the atmo-
sphere are valuable resources for model parameterization, calibration, and validation. However,
uncertainties in measured data, i.e., data gaps and inherent random errors, create problems for
researchers attempting to quantify uncertainties in model projections of terrestrial ecosystem carbon
cycling. Here, we demonstrate that a model-data fusion method (residual bootstrap) produces defen-
sible annual NEE sums, through mimicking the behavior of random errors, filling missing values, and
simulating gap-filling biases. This study estimated annual NEE sums for 53 site-years based on nine
eddy-covariance tower sites in the USA, and found that our annual estimates were, in most cases, com-
parable in magnitude with those obtained from AmeriFlux gap-filled data. Additionally, compared to
the AmeriFlux standardized gap-filling, our approach provides better NEE estimates for moderate to
longer, and more frequent, data gaps. Annual accumulated uncertainties in NEE at the 95% confidence
level were ±30 gC m−2 year−1 for evergreen needleleaf forests; ±60 gC m−2 year−1 for deciduous broadleaf
forests; and ±80 gC m−2 year−1 for croplands. The residual bootstrap performed worst when gap length
was greater than one month or data exclusion greater than 90% during the growing season, common
to other gap-filling techniques. However, this study produced robust results for most site years when
monthly data coverage during the growing season is not extremely low. We therefore suggest that the
inclusion of NEE uncertainty estimates and better estimation for moderate to longer, and more fre-
quent, data gaps as provided by the residual bootstrap approach can be beneficial for ecosystem model
evaluation.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Despite progress in developing terrestrial ecosystem models
over the past several decades, there is still very limited knowledge
of the performance skills of these process models (Schwalm et al.,
2010; Keenan et al., 2012; Luo et al., 2012). In order to evaluate and
improve performance of terrestrial ecosystem models, more atten-
tion needs to be placed on validation against observations. Eddy
covariance observations of ecosystem-atmosphere CO2 exchanges
are essential for evaluating dynamics of model predicted fluxes
because these net ecosystem exchange (NEE) measurements are on
a continuous basis of typical 30-min averaging intervals (Falge et al.,
2001; Baldocchi, 2003). However, recent studies have revealed
that data uncertainty is a systematic cause of the low agreement
between model predictions and observations (Schwalm et al., 2010;
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Dietze et al., 2011; Keenan et al., 2012). Many of the observational
flux datasets used to develop and test ecosystem models are subject
to systematic and random measurement errors, which weaken the
quality of data and complicate model evaluation (Baldocchi, 2003;
Hollinger and Richardson, 2005). Therefore, knowing the makeup
of uncertainty in observed data is a prerequisite to quantifying the
performance of ecosystem process models.

In the eddy covariance technique, uncertainties of flux mea-
surements can be roughly categorized into systematic and random
errors. Systematic errors often occur under stable, low-wind con-
ditions at night due to insufficient turbulence mixing and are
notoriously difficult to quantify (Lee, 1998; Loescher et al., 2006).
The most common solution to these types of systematic errors is
data filtering and data filling. Friction velocity (u∗) filtering has been
developed to reject suspicious NEE measurements when u∗ falls
below a critical threshold (Gu et al., 2005; Barr et al., 2013b), and
then data gaps created by u∗ thresholds are filled using various gap-
filling methods (Falge et al., 2001; Moffat et al., 2007). In addition,
instrument failures and data quality controls (Foken and Wichura,
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1996; Mahrt, 1998) result in further gaps in the data record. In gen-
eral, data coverage over the course of a year is only ∼65% (Falge
et al., 2001). Consequently, these extensive, non-random data gaps
are a major source of bias in estimating the magnitude of NEE inte-
grals at various timescales, ranging from hours and years. Further,
data gaps pose a challenge to quantitatively assess how well terres-
trial ecosystem models simulate the processes governing NEE, i.e.,
gross primary production (GPP) and ecosystem respiration (RE).
Because GPP and RE estimates rely only on a small amount of
reliable nocturnal NEE measurements and are likely to be biased,
they in turn complicate the ecosystem model validation (Reichstein
et al., 2005; Desai et al., 2008).

Apart from data gaps, random errors are inherent in flux mea-
surements at non-gap time points. Random errors are stochastic
and include turbulence sampling errors, statistical errors associ-
ated with time-varying flux footprints, and errors relevant to the
measurement equipment, among others (Moncrieff et al., 1996). To
characterize this type of data uncertainty, Hollinger and Richardson
(2005) compared two adjacent tower measurement series in an
evergreen needleleaf forest and found that random measurement
errors were double-exponentially distributed with zero means
and heteroscedastic variances. This heteroscedasticity depended
on the flux magnitude, which varied in time, i.e., flux uncertainty
was greater during the growing season than dormant season and
greater in the daytime than nighttime. Therefore, these findings
suggest that when not account for, this heteroscedastic random
uncertainty has the potential to undermine model-measurement
intercomparisons. Although Dietze et al. (2011) added artificial
double-exponential errors to ecosystem synthetic data for the pur-
pose of assessing model-measurement mismatch, it is unclear from
the study of Hollinger and Richardson (2005) to what extent the
application of the distribution parameter estimates is appropri-
ate at other sites. In subsequent work, Richardson et al. (2008)
used model residuals (mismatches between observed and modeled
fluxes) directly to quantify the uncertainty distribution characteris-
tics of a number of CarboEurope sites. However, their residuals did
not reflect the nature of flux random errors (as could be inferred
from Monte Carlo simulations) and were closely tied to an under-
lying model structure.

Due to a lack of two adjacent tower measurement series for
most sites, Monte Carlo simulations, in conjunction with model
residuals, have been used to resolve the problem of estimating
uncertainty due to the random nature of any individual NEE obser-
vation. Also, when model residuals are resampled and added back
to the model output, gap-free flux datasets can be constructed so
that uncertainty in sums of flux estimates can be quantified at
various timescales (Hagen et al., 2006; Stauch et al., 2008). Con-
ceptually, this method requires a good model to give reasonable
residuals, so that the resampled residuals reflect the behavior of
the true measurement random errors even though residuals do
not have mean zero (Hardle and Bowman, 1988). In this context,
Hagen et al. (2006) and Stauch et al. (2008) used empirical mod-
els under the Monte Carlo framework. Although these empirical
models are closely tuned to the data, their model parameters are
tied to “non-gap-point” data and they in turn exert less capacity for
extrapolation at gap points. The resampled residuals may therefore
not reflect the behavior of random errors at gap points.

In this paper, rather than using empirical models, we used pro-
cess models to separate residuals from NEE observations, for several
reasons. First, process models contain useful prior functional con-
strains about ecosystem NEE fluxes and maintain mechanistic
consistency in gap and non-gap predictions. Second, although pro-
cess models exhibit persistent bias at certain times of year, they
generally can adequately capture the diurnal cycle (Schwalm et al.,
2010; Dietze et al., 2011; Stoy et al., 2013). Because our approach
does not require mean zero residuals, resampled residuals have the

potential to mirror the behavior of measurement random errors.
Third, the gulf between process-based and empirical approaches
to predicting NEE fluxes may be bridged by the use of process
model-data fusion. Because little agreement on model perfor-
mance metrics exists to separate “good” and “bad” process models
(Gleckler et al., 2008; Reichler and Kim, 2008; Luo et al., 2012),
using multi-model ensemble means has been advocated because
ensemble means generally provide more reliable information than
any single model by alleviating individual model bias (Cantelaube
and Terres, 2005; Thomson et al., 2006; Schwalm et al., 2010).

The goal of this study is to quantify data uncertainty, in asso-
ciation with random measurement errors and gap-filling errors,
from eddy covariance measurements at nine sites spanning three
vegetation types. We applied a Monte Carlo approach (residual
bootstrap) to simulate multiple runs of gap-free NEE time series,
and hence, estimates the mean NEE response at each point in time
(pseudo data). To evaluate the degree to which process model
errors confound random measurement errors, we differenced pos-
terior residuals from eddy covariance observations and pseudo
data in line with non-gap points. Having evaluated the confounded
effect, we assessed the performance of residual bootstrap simula-
tions at timescales longer than the measurement time intervals to
ensure consistent error propagation. Finally, we inferred the annual
NEE sum with uncertainty limits, for the purpose of assessing the
consequence of random errors and gap-filling errors in long-term
measurements.

2. Materials and methods

2.1. Observed and modeled NEE data

All eddy covariance data used were obtained from the AmeriFlux
network (http://public.ornl.gov/ameriflux/). The obtained 30-min
NEE values had been processed using a standardized protocol,
including storage correction, spike removal, u* filtering (Gu et al.,
2005), and gap-filling using marginal distribution sampling (MDS;
Reichstein et al., 2005) or artificial neural network (ANN; Papale
and Valentini, 2003). The valid NEE observations (non-gap data)
had data coverage ranging between 30% and 70% over the course
of a year (Table 1).

Mean model ensemble (mean simulated value across all mod-
els) data were analyzed from 15 ecosystem models (Table 1):
13 models obtained through the NACP (North American Carbon
Program) interim site synthesis model output (Barr et al., 2013a;
Ricciuto et al., 2013), and two versions of the Community Land
Model (Lawrence et al., 2011; Koven et al., 2013; Tang and Riley,
2013). Modeled NEE fluxes were model-specific runs using stan-
dardized meteorological data, soil types, and management history.
Meteorological data, such as air temperature, precipitation, solar
radiation, and humidity, were gap-filled using National Oceanic and
Atmospheric Administration (NOAA) meteorological station data
and Daymet reanalysis products following Ricciuto et al. (2009).
Locally observed values of soil texture and management history by
model simulations were given by the AmeriFlux BADM templates
(Law et al., 2008). All models were simulated at a 30- or 60-min step
using the standardized meteorological data as driving variables
(http://nacp.ornl.gov/mast-dc/docs/Site Synthesis Protocol v7.pdf).

Concerning the interannual variation in NEE provided by Monte
Carlo simulations, we selected sites in the AmeriFlux network
across the U.S. with at least five years of data collected between
2000 and 2007 and at least nine model outputs, with plant func-
tional types that were represented by at least three sites. This
resulted in nine eddy covariance sites spanning 53 site-years. Of
these sites, three were characterized as evergreen needleleaf forest
(US-Ho1, US-Me2, and US-NR1), three as deciduous broadleaf forest

http://public.ornl.gov/ameriflux/
http://nacp.ornl.gov/mast-dc/docs/Site_Synthesis_Protocol_v7.pdf


Download English Version:

https://daneshyari.com/en/article/6537329

Download Persian Version:

https://daneshyari.com/article/6537329

Daneshyari.com

https://daneshyari.com/en/article/6537329
https://daneshyari.com/article/6537329
https://daneshyari.com

