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ABSTRACT

A method is described for the generation of climate scenarios in a form suitable for driving agricultural
models. The scenarios are tailored to the region in southeastern South America bounded by 25-40°
S, 45-65° W, denoted here as SESA. SESA has been characterized by increasing summer precipitation,
particularly during the late 20th century, which, in the context of favorable market conditions, has enabled
increases in agricultural production. Since about year 2000, however, the upward tendency appears to
have slowed or possibly stopped, raising questions about future climate inputs to regional agricultural
yields.

The method is not predictive in the deterministic sense, but rather attempts to characterize uncertainty
in near-term future climate, taking into account both forced trends and unforced, natural climate fluctua-
tions. It differs from typical downscaling methods in that GCM information is utilized only at the regional
scale, subregional variability being modeled based on the observational record. Output, generated on the
monthly time scale, is disaggregated to daily values with a weather generator and used to drive soybean
yields in the crop model DSSAT-CSM, for which preliminary results are discussed. The simulations pro-
duced permit assessment of the interplay between long-range trends and near-term climate variability

in terms of agricultural production.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

During the 20th century, particularly its latter half, southeast-
ern South America (SESA) experienced an upward trend in summer
rainfall (Gonzalez et al., 2013; Liebmann et al., 2004). Together
with favorable market conditions, and in the context of techno-
logical advances, this upward tendency has enabled increases in
agricultural yields (Magrin et al., 2005; Viglizzo and Frank, 2006).
Since about year 2000, however, the upward tendency in rainfall
has slowed, or possibly reversed. Neither the steady upward trend
nor its recent slowing is well-simulated by global climate mod-
els (Gonzalez et al., 2014), leaving its cause and future evolution
in question. The recent decadal hindcast experiments conducted
as part of the Coupled Model Intercomparison Project, phase 5
(CMIP5) do not indicate significant decadal prediction skill for SESA
for either temperature or precipitation, based on initializing the
models with the observed ocean state (Goddard et al., 2013). This
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leaves an unfilled need for useful climate information for the next
few decades, in particular for the purposes of assessing the climatic
contribution to potential fluctuations in agricultural yields.

We present here a methodology, not for predicting the future
of SESA hydroclimate in a deterministic sense, but rather, for the
characterization of future regional climate uncertainty over the
next few decades. The method represents an extension of that
described in earlier work in the Western Cape Province of South
Africa (Greene et al., 2012, hereinafter referred to as G12), and
accounts for uncertainties in both the response to anthropogenic
forcing and in natural, unforced climate variability. A key ques-
tion in the forcing of SESA hydroclimate concerns the influence of
stratospheric ozone (e.g., Gonzalez et al., 2014); a simple method
for representing the associated uncertainty is implemented. Pos-
sible cross-scale interaction is incorporated into the simulation
framework as necessary. The final output is downscaled using a
modification of the k-nearest-neighbor (k-NN) resampling method,
applied to observational data that may have either monthly or
daily time resolution. The core statistical model represents spa-
tial covariability as well as serial autocorrelation in individual
variables.
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Fig. 1. Trends for precipitation and maximum and minimum daily temperatures for 1901-2011, aggregated to the seasonal (SONDJF) level. Note the reversal of colors

between the precipitation and temperature scales.

The data utilized are described in Section 2 and the method in
Section 3. Validation of various climate diagnostics is covered in
Section 4. The downscaling component is described in Section 5 and
preliminary application using an agricultural model in Section 6.
A discussion and conclusions are presented in Sections7 and 8,
respectively.

2. Data

We employ both observational data and climate model simula-
tions. When downscaling directly to the daily time step, a hybrid
product based on in situ observations, satellite data and reanalysis
is employed. These data types are described in turn.

2.1. Observations

The basic observational dataset employed is the TS3.21 prod-
uct of the Climatic Research Unit, University of East Anglia (Harris
et al.,, 2013), which is gridded at 0.5° and has monthly time reso-
lution. The dataset is complete, but includes values that may have
been filled, either by interpolation from nearby stations or with
climatological values. The northerly extent of the study domain
was limited by the presence of filled values between 20° S and
25°S. The TS3.21 data extend from 1901 through the end of 2012;
since we model here a growing season (SOND]JF) that crosses the
year boundary, we limit the nominal range to 1901-2011, per-
mitting the use of 111 full six-month seasons in modeling and
resampling.

The study domain appears as a box in each panel of Fig. 1, which
shows 1901-2011 linear trend coefficients for SONDJF for the three
variables modeled: precipitation and maximum and minimum
daily temperatures (Tmax and Tmin, respectively). The increasing
tendency of precipitation in the SESA box can clearly be seen, as can
the general increase in both of the temperature variables. The Tmax
plot shows an area in the southwest of the SESA box with weakly
negative coefficients, even as the rest of the box has warmed. Post-
1971, however, a period of increasing global temperatures, Tmax
has increased more uniformly within the box. It is of interest that
Tmin increases more rapidly with time, even for trends beginning
in 1901, implying a decrease in the diurnal temperature range.
Future trends are modeled separately for the two temperature
variables.

For precipitation, comparison was made with version 6 of the
Global Precipitation Climatology Center (GPCC Schneider et al.,
2011). The regional SONDJF means (3.41 mmd-! and 3.58 mmd-1)
and standard deviations (1.34mmd~! and 1.47mmd-! for CRU
and GPCC, respectively) agree fairly well, as do the regional
mean 20th-century trends (0.085 and 0.086mmd-! decade™!,
respectively). Trend patterns within the SESA are also reasonably
well-correlated (r=0.67). Since the CRU dataset comprises similarly
computed and gridded values for Tmax and Tmin, and since these

variables are modeled jointly with precipitation, it was decided to
utilize CRU for the work presented herein.

2.2. Climate model simulations

In G12, future regional precipitation trajectories were selected
by quantile from a distribution over a set of CMIP5 climate models.
For reasons to be discussed we do not utilize this procedure here.
However a CMIP5 ensemble is utilized to estimate the global and
regional responses to external forcing, to investigate covariation
between future regional trends in precipitation and temperature
and for comparison with projected temperature trends. The models
utilized are listed in Table 1.

Questions have arisen regarding model interdependence (Knutti
et al., 2013). Only minor differences were noted here when distri-
butions were computed after first averaging over models within a
family. The full multimodel set (one ensemble member per model)
was therefore utilized.

2.3. Satellite data and reanalyses

In the present report we describe downscaling to the monthly
time step; the possibility also exists of generating daily output, by
resampling from a dataset such as AgMERRA, a product based on the
MERRA reanalysis (Rienecker et al., 2011) developed for crop mod-
eling as part of the international AgMIP project (http://agmip.org).
This is discussed in Section 5.

2.4. Stratospheric ozone

Because stratospheric ozone may affect SESA precipitation we
model a partial dependence. Both past and projected concentration
data, as compiled by the Stratosphere-troposphere Processes And
their Role in Climate (SPARC) activity of the World Climate Research
Program (Cionni et al., 2011), are utilized. This dataset serves as a
boundary forcing for the majority of CMIP5 models, which do not
compute stratospheric ozone interactively.

3. Method

The procedure developed herein advances the work described in
G12, in part by adding refinements but also though the representa-
tion of within-region variability in terms of principal components.
This enables the consideration of larger, more climatically com-
plex regions than could easily be accommodated using the earlier
method. In common with G12, climate variability is decomposed
into long-range trend, annual-to-decadal variability and suban-
nual variations. The first two of these are modeled independently
and the results combined, producing annually-resolved seasonal
simulations over the entire gridded domain. These simulations are
then downscaled in time, using a k-NN variant. In South Africa the
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