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Similarity solutions for the problem of free convection flow over a non-isothermal horizontal plate embedded
in porous media are investigated in the presence of internal heat generation. The porous medium is saturated
with non-Newtonian power law fluid. Numerical results are obtained for the effect of power law temperature
profile and fluid index on the heat transfer characteristics.
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1. Introduction

Nield and Bejan [1], Ingham and Pop [2], Vafai [3] provide an ex-
tensive study on the practical importance and applications of thermal
convection in porous media. Of late a number of problems in free con-
vection in the presence of internal heat generation source have been
investigated [4–9]. The effect of internal heat generation finds its
applications in reactor safety analysis, metal waste form development
for spent nuclear fuel, fire and combustion studies, and storage of
radioactive materials.

Gorla and Kumari [10] give similarity solutions for free convec-
tions in non-Newtonian fluids along horizontal plate in the absence
of internal heat generation whereas Postelnicu and Pop [8] have stud-
ied the problem of free convection over horizontal and vertical sur-
faces with internal heat generation for Newtonian fluids. In this
paper we study the effect of variable temperature profile and fluid
index on the velocity and temperature profile in the presence of inter-
nal heat generation for a horizontal plate embedded in a porous
medium saturated with non-Newtonian fluid. Similarity solutions
are obtained for exponentially decaying heat generation term [8] and
the resulting system of differential equations is solved numerically.

2. Mathematical formulation

Equations governing the problem of free convection boundary
layer from a heated horizontal surface embedded in a saturated
porous medium with non-Newtonian fluid are written as [8]
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where the x – coordinate and the y – coordinate are measured along
the plate and normal to the plate. The power law fluid index n for
various fluids is as follows:

(i) nb1 for pseudo plastic fluids or shear-thinning fluids that have
a lower apparent viscosity at higher shear rates.

(ii) n=1 for Newtonian fluids where the shear stress is directly
proportional to the shear rate.

(iii) n>1 for dilatant fluids or shear-thickeningfluids forwhich there
is an increase in the apparent viscosity at higher shear rates.

The modified permeability K⁎(n) is defined as
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where d is the diameter of the particle and ε is the porosity of the
medium.

The appropriate boundary conditions associated with Eqs. (1)–(3)
are

v ¼ 0; T ¼ T∞ þ Axλ at y ¼ 0 for x≥ 0 ð4Þ

u→0; T→T∞ as y→∞ ð5Þ

where A and λ are positive constants.
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We introduce the similarity transformations

ψ ¼ αmRa
1=3
x f ξð Þ; θ ξð Þ ¼ T−T∞

Tw−T∞
; ξ ¼ Ra1=3x

y
x

ð6Þ

where ψ is the stream function defined in the usual way u=∂ψ/
∂y and v=−∂ψ/∂x. The generalized local Rayleigh number Rax is
defined as

Rax ¼
gβK� nð Þ Tw−T∞ð Þxn

αn
mν

�

� � 3
2nþ1

The internal heat generation qw decays exponentially and is given
by

qw ¼ ρcpfαm Tw−T∞ð Þ
x2

Raxe
−ξ

On using Eq. (6), Eqs. (1)–(3) reduce to the system of differential
equations

n f ′
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Coupled with the boundary conditions

f 0ð Þ ¼ 0; θ 0ð Þ ¼ 1
f ′→0; θ→0 as ξ→∞ ð9Þ

The primes in Eqs. (7)–(9) denote differentiation with respect to
the similarity variableξ.

3. Results and discussion

Eqs. (7) and (8) along with the boundary conditions (Eq. (9))
are solved numerically for fluid index n varying from 0.5 to 2.0 for
different values of power law index λ. The local Nusselt number is
defined by

Nux ¼ − x
Tw−T∞

∂T
∂y y¼0

¼ −Ra1=3x θ′ 0ð Þ
����

Table 1
Values of Nux/Ra-1/3 for different values of n and λ.

n λ=0 λ=1/4 λ=1/2 λ=1

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

0.5 −0.1568 0.4259 0.2554 0.6760 0.5264 0.8720 0.9611 1.1443
0.8 −0.1919 0.4249 0.1691 0.6500 0.4261 0.8214 0.8355 1.1075
1.0 −0.1992 0.4240 0.1436 0.6469 0.3943 0.8163 0.7930 1.0994
1.5 −0.2005 0.4460 0.1163 0.6494 0.3563 0.8171 0.7370 1.1033
2.0 −0.2051 0.4606 0.1076 0.6607 0.3407 0.8240 0.7099 1.1131

Nomenclature

A constant
cpf specific heat at constant pressure of the fluid
f dimensionless velocity profile
g acceleration due to gravity
km effective thermal conductivity
K*(n) modified permeability of porous medium
Nux local Nusselt number
qw internal heat generation
Rax generalized local Rayleigh number
Τ temperature
u&v velocity component in x and y directions
x & y Cartesian coordinates along to the plate and normal to

it respectively

Greek symbols
αm effective thermal diffusivity
β coefficient of thermal expansion
λ constant
ξ similarity variable
θ dimensionless temperature function
ρ density
ν⁎ modified kinematic viscosity
ψ stream function

Subscripts
w wall condition
∞ ambient condition

Table 2
Velocity f’ at the leading edge ξ=0 for different values of n and λ.

n λ=0 λ=1/4 λ=1/2 λ=1

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

With internal
heat generation

Without internal
heat generation

0.5 2.3657 1.5643 2.1643 1.4669 2.1901 1.5448 2.3819 1.6686
0.8 1.6116 1.1558 1.5943 1.1679 1.6419 1.2192 1.7747 1.3438
1.0 1.4133 1.0476 1.4309 1.0885 1.4809 1.1408 1.5947 1.2512
1.5 1.1961 0.9533 1.2396 1.0061 1.2870 1.0536 1.3735 1.1533
2.0 1.1058 0.9279 1.1579 0.9788 1.2005 1.0234 1.2715 1.1170
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