Contents lists available at ScienceDirect





journal homepage: www.elsevier.com/locate/agrformet



# Modeling plant transpiration under limited soil water: Comparison of different plant and soil hydraulic parameterizations and preliminary implications for their use in land surface models

## CrossMark

### Anne Verhoef<sup>a,\*</sup>, Gregorio Egea<sup>b</sup>

 <sup>a</sup> Department of Geography and Environmental Science; School of Archaeology, Geography and Environmental Science, The University of Reading, Whiteknights, PO Box 227, Reading RG6 6AB, UK
 <sup>b</sup> Area of Agroforestry Engineering, Technical School of Agricultural Engineering, University of Seville, Ctra. Utrera, km 1, 41013 Seville, Spain

#### ARTICLE INFO

Article history: Received 22 November 2013 Received in revised form 3 February 2014 Accepted 15 February 2014 Available online 12 March 2014

Keywords: Plant water stress Gas exchange Stomatal conductance Hydraulic signaling Water retention curve Land surface model

#### ABSTRACT

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor,  $\beta$ , dependent on soil moisture content,  $\theta$ , that ranges linearly between  $\beta = 1$  for unstressed vegetation and  $\beta = 0$  when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil-root-xylem-leaf system. A comparison with the original linear  $\theta$ -based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of  $\beta$ , and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken.

Crown Copyright © 2014 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

#### 1. Introduction

Most land surface models (LSMs), i.e. those models describing the land-surface atmosphere interactions in Numerical Weather Prediction (NWP) models or Global Circulation Models (GCMs), now employ coupled net assimilation ( $A_n$ )-stomatal conductance ( $g_s$ ) descriptions (Sala and Tenhunen, 1996; Arora, 2003; Calvet et al., 2004; Keenan et al., 2009; Sellers et al., 1996; Best et al., 2011; Boussetta et al., 2013; Oleson et al., 2013; Van Den Hoof et al., 2013). These models ensure the most realistic representation of plant physiological processes, which in theory should lead to more accurate predictions of (global) water and carbon cycles, under current and future climatic conditions. For example, accurate model

\* Corresponding author. Tel.: +44 118 3786074; fax: +44 118 3786660. *E-mail address:* a.verhoef@reading.ac.uk (A. Verhoef). simulations of heat-wave related temperature anomalies over the European domain, crucially depend on accurate soil moisture predictions (e.g. Zampieri et al., 2009), which in turn rely on realistic descriptions of canopy exchange processes in LSMs, which includes plant water stress and related root water uptake.

How the current  $A_n$ – $g_s$  models, with some of these embedded in LSMs, take account of plant water stress is described in detail in Egea et al. (2011a), for example. In almost all LSMs water stress will be determined by making use of a key soil hydraulic property: the soil water characteristic (SWC) which describes the relationship between soil matric potential,  $\psi_s$  (e.g. in MPa) and volumetric moisture content,  $\theta$  (m<sup>3</sup> m<sup>-3</sup>). SWCs are generally calculated using both Brooks and Corey (1964), B&C, equations as well as Van Genuchten (1980)–Mualem (1976), VGM, parameterizations; we will get back to this in Section 2.2.

In the area of soil physics and plant science, it has long been known and widely accepted that plants respond to soil matric

http://dx.doi.org/10.1016/j.agrformet.2014.02.009

0168-1923/Crown Copyright © 2014 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

potential (suction) rather than to soil water content. For example, Marshall et al., 1996; (Section 14.2) discussed the closure of leaf stomata at particular leaf water potentials and the relationship between leaf and soil water potentials. Mullins (2001) led their article by stating that "in the absence of high concentrations of solutes, [soil matric potential] is the major factor that determines the availability of water to plants". The same point can be found in Gregory and Nortcliff (2013) and in many other sources.

By contrast, in a considerable number of LSMs plant water availability directly depends on  $\theta$ , despite this wealth of literature; it decreases linearly when  $\theta$  decreases from its value at field capacity (FC, also called critical point, generally at  $\psi_s = -0.033 \text{ MPa}^1$ , see e.g. Veihmeyer and Hendrickson (1931), Saxton et al. (1986), Best et al. (2011), to its value at wilting point (WP,  $\psi_s = -1.5 \text{ MPa}$ ), respectively.  $\theta_{FC}$  and  $\theta_{WP}$  depend on soil textural composition, and on the type of hydraulic parameterization selected (B&C versus VGM) and parameter set used, as summarized in Section 2.2 and Table 2. The plant water stress factor (although plant water availability function would be a more appropriate name), generally referred to as  $\beta$ , is normalized by  $\theta_{FC}-\theta_{WP}$ , so that  $\beta$  becomes dimensionless and ranges between 1 (well-watered plants) and 0 (transpiration is zero, apart from cuticular transpiration):

$$\beta \begin{cases} 1 & \theta \ge \theta_{FC} \\ \left[ \frac{\theta - \theta_{WP}}{\theta_{FC} - \theta_{WP}} \right] & \theta_{WP} < \theta < \theta_{FC} \\ 0 & \theta \le \theta_{WP} \end{cases}$$
(1a)

Many LSMs (e.g. Best et al., 2011, for the JULES UK community model, or Boussetta et al., 2013, for the CTESSEL model) use this linear decline function for their  $\beta$  parameterization.

The term  $(\theta - \theta_{WP})/(\theta_{FC} - \theta_{WP})$  is also known as the fraction of transpirable soil water (FTSW). In most current LSMs, this type of  $\beta$  factor is being used to apply water stress directly to  $A_n$  or to the parameters of the photosynthesis model (Arora, 2003; Ronda et al., 2001; Calvet et al., 2004; Krinner et al., 2005; Best et al., 2011; Boussetta et al., 2013).

Egea et al. (2011a), from hereon referred to as EVV11, introduced a more versatile  $\beta$  function which varies curvi-linearly (with flexibility in degree of curvature, via parameter q, see Eq. (1b)), when  $\theta$ ranges between  $\theta_{FC}$  and  $\theta_{WP}$ :

$$\beta \begin{cases} 1 & \theta \ge \theta_{FC} \\ \left[ \frac{\theta - \theta_{WP}}{\theta_{FC} - \theta_{WP}} \right]^{q} & \theta_{WP} < \theta < \theta_{FC} \\ 0 & \theta \le \theta_{WP} \end{cases}$$
(1b)

EVV11 also introduced alternative ways to exert water stress on canopy exchange processes, i.e. not just via stomatal (multiplication of  $g_s$  by  $\beta$ ) or biochemical pathways (by multiplying maximum carboxylation rate,  $V_{cmax}$ , and maximum photosynthetic electron transport rate,  $J_{max}$ , with  $\beta$ ) but also through multiplication of mesophyll conductance,  $g_m$ , by  $\beta$  (see also Calvet, 2000) or a combination of the above.

There are some models that calculate  $\beta$  as a function of soil matric potential,  $\psi_s$ . One of the earliest water stress equations of this kind is the one by Feddes et al. (1978), used in the hydrological SWAP model (Van Dam et al., 2008). Focusing on LSMs (SWAP is not a LSM; it is not embedded in a NWP or GCM), Oleson et al. (2013), from here on referred to as OEA13, for the Community Land Model

#### Table 1

Parameter values used in model equations, and explanation of abbreviations.

| Parameter           | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default value        |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| <i>a</i>            | Parameter of D02 model see Eq. (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.0                  |
| u <sub>1</sub>      | Effective APA cognostration rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                  |
| u <sub>ABA</sub>    | Effective ADA sequestiation rate $mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{mathal{ma$ | 0.0001               |
| <b>h</b> ( )        | $\begin{bmatrix} 11101 H_2 \cup 111 & S & S \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Can Table 2          |
| D(-)                | B&C: Slope of the soll water characteristic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See Table 2          |
| $D_0$               | Parameter of D02 model, see Eq. (5) [KPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.07                 |
| K <sub>sat</sub>    | B&C & VGWI: Saturated hydraulic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See Table 2          |
| 14                  | conductivity [m s <sup>-+</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                    |
| l(-)                | VGM: empirical pore-connectivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | See Table 2          |
|                     | parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |
| L <sub>max</sub>    | Max. xylem hydraulic conductivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00667              |
|                     | $[mol m^{-2} s^{-1} MPa^{-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| n(-)                | VGM; measure of the pore-size distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | See Table 2          |
| R <sub>sr,min</sub> | Min. soil-root hydraulic resistance [MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1                  |
|                     | $mol^{-1} H_2O m^2 s$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |
| α                   | VGM; inverse of the air-entry matric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | See Table 2          |
|                     | potential [m <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |
| γ                   | ABA synthesis parameter [m <sup>3</sup> mol <sup>-1</sup> ABA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $1.48 	imes 10^{-4}$ |
| δ                   | Increase in stomatal sensitivity to [ABA]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.0                 |
|                     | [MPa <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |
| $\theta_{sat}$      | Soil moisture at saturation [m <sup>3</sup> m <sup>-3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See Table 2          |
| $\theta_{\rm FC}$   | Soil moisture at field capacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | See Table 2          |
|                     | (-0.033 MPa) [m <sup>3</sup> m <sup>-3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |
| $\theta_{WP}$       | Soil moisture at wilting point (-1.5 MPa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | See Table 2          |
|                     | [m <sup>3</sup> m <sup>-3</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| λr                  | Root ABA synthesis coefficient [MPa <sup>-1</sup> m <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $4 	imes 10^{-6}$    |
| -                   | s <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| λο                  | Leaf ABA synthesis coefficient [MPa <sup>-1</sup> m <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $1 \times 10^{-6}$   |
| c                   | s <sup>-1</sup> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| ψr+1                | Threshold value of $\psi_0$ at which $L_{r_0}$ starts to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -1.0                 |
| 7 tL                | decline [MPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |
| 1/1.11              | Value of $y_{c}$ at which $L_{c}$ falls to zero [MPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $-7.0^{*}$           |
| Ψ XL<br>We cat      | B&C soil matric potential at air entry [MPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | See Table 2          |
| γ 3,5dL             | or m]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See Tuble 2          |
| 1/1                 | Value of $\psi$ s at field capacity [MPa]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.033               |
| ₽ s,max             | value of $\psi$ 5 at field capacity [witha]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |

| Abbreviation | Explanation                                       |
|--------------|---------------------------------------------------|
| ABA          | Abscisic acid                                     |
| B&C          | Brooks and Corey (1964)                           |
| BL           | Biochemical limitation                            |
| C&H          | Clapp and Hornberger (1978)                       |
| CEA          | Cosby et al. (1984)                               |
| CLM          | Community Land Model                              |
| D02          | Dewar (2002)                                      |
| EVV11        | Egea et al. (2011a)                               |
| FC           | Field capacity                                    |
| FTSW         | Fraction of transpirable soil water               |
| LSM          | Land surface model                                |
| ML           | Mesophyll limitation                              |
| OEA13        | Oleson et al. (2013)                              |
| PFT          | Plant functional type                             |
| RT           | Relative transpiration                            |
| S05          | Sinclair (2005)                                   |
| SL           | Stomatal limitation                               |
| SWC          | Soil water characteristic                         |
| SVG          | Schaap and Van Genuchten (2006)                   |
| TRF          | Transpiration reduction function (RT versus FTSW) |
| VGM          | Van Genuchten-Mualem hydraulic parameterization   |
| WEA          | Wösten et al. (1999)                              |
| WP           | Wilting point                                     |

\* D02 used -3 MPa.

(CLM), define a plant wilting factor, equivalent to  $\beta$  in Eqs. (1a) and (1b), by:

$$\beta = 0 \le \frac{\psi_{s,c} - \psi_s}{\psi_{s,c} - \psi_{s,o}} \le 1$$
(2)

where  $\psi_{s,c}$  is the soil water potential at which stomata close and  $\psi_{s,o}$  is the soil water potential when the stomata are fully open. In Eq. (2) the independent variable is  $\psi_s$ , not  $\theta$ . Furthermore, whereas in Eqs. (1a) and (1b) parameters  $\theta_{FC}$  and  $\theta_{WP}$  are dependent on soil texture,  $\psi_{s,o}$  and  $\psi_{s,c}$  are dependent on plant functional type (PFT).

<sup>&</sup>lt;sup>1</sup> Note that 10 kPa is another widely used value to denote FC (see, e.g. Verhoef and Egea, 2013).

Download English Version:

## https://daneshyari.com/en/article/6537604

Download Persian Version:

https://daneshyari.com/article/6537604

Daneshyari.com