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Models have been widely used to estimate carbon fluxes at regional scales, and the uncertainty of mod-
eled fluxes, however, has rarely been quantified and remains a challenge. A quantitative uncertainty
assessment of regional flux estimates is essential for better understanding of terrestrial carbon dynamics

19 December 2013 and informing carbon and climate decision-making. We use a simple ecosystem model, eddy covariance
Accepted 27 January 2014 . . . :
(EC) flux observations, and a model-data fusion approach to assess the uncertainty of regional carbon
. ’ flux estimates for the Upper Midwest region of northern Wisconsin and Michigan, USA. We combine net
eyworas:

ecosystem exchange (NEE) observations and an adaptive Markov chain Monte Carlo (MCMC) approach
to quantify the parameter uncertainty of the Diagnostic Carbon Flux Model (DCFM). Our MCMC approach
eliminates the need for an initial equilibration or “burn-in” phase of the random walk, and also improves
the performance of the algorithm for parameter optimization. For each plant functional type (PFT), we
use NEE observations from multiple EC sites to estimate parameters, and the resulting parameter esti-
mates are more representative of the PFT than estimates based on observations from a single site. A
probability density function (PDF) is generated for each parameter, and the spread of the PDF provides
an estimate of parameter uncertainty. We then apply the model with parameter PDFs to estimate NEE
for each grid cell across our study region, and propagate the parameter uncertainty through simulations
to produce probabilistic flux estimates. Over the period from 2001 to 2007, the mean annual NEE of
the region was estimated to be —30.0 Tg Cyr—', and the associated uncertainty as measured by standard
deviation was+7.6 TgCyr~!. Uncertainty in parameters can lead to a large uncertainty to estimates of
regional carbon fluxes, and our model-data approach can provide uncertainty bounds to regional carbon
fluxes. Future research is needed to apply our approach to more complex ecosystem models, assess the
usefulness, validity, and alternatives of the PFT and vegetation type concepts, and to fully quantify the
uncertainty of regional carbon fluxes by incorporating other sources of uncertainty.
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1. Introduction et al., 2005; Xiao et al., 2009). Despite numerous modeling stud-
ies, the assessment of the uncertainty in modeled fluxes has been

Terrestrial ecosystems play an important role in regulating  overlooked. Uncertainty in future terrestrial ecosystem carbon

carbon dioxide (CO;) concentrations in the atmosphere through
photosynthesis and respiration. The quantification of ecosystem
carbon fluxes over regions can improve our understanding of the
feedbacks between the terrestrial biosphere and the atmosphere in
the context of global change. Ecosystem models have been widely
used to estimate carbon fluxes over various spatial and temporal
scales (McGuire et al., 2001; Nemani et al., 2003; Bond-Lamberty
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exchange also remains one of the dominant uncertainties in pre-
diction of future climatic change (Friedlingstein et al., 2006; IPCC,
2007). A better understanding of the uncertainty in carbon dynam-
ics is essential for sound climate and decision-making (Ascough
et al., 2008).

The overall uncertainty of modeled fluxes is from three sources
of uncertainty (Beck, 1987; Verbeeck et al., 2006): uncertainty of
input variables (e.g., imperfect land cover or climate data), uncer-
tainty of model structure (e.g., incomplete or flawed underlying
processes and assumptions), and uncertainty of model parame-
ters (e.g., imperfectly or poorly defined parameters due to lack of
information). For example, the uncertainty in land cover maps can
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lead to significant uncertainty in modeled carbon fluxes at regional
scales (Quaife et al., 2008; Xiao et al., 2011). The uncertainty of
model parameters can also lead to significant uncertainty in car-
bon fluxes. Model-data fusion (or data assimilation) approaches
are increasingly used to estimate or optimize the parameters of
carbon cycle models (Braswell et al., 2005; Knorr and Kattge, 2005;
Mahadevan et al., 2008; Ricciuto et al., 2008a; Wang et al., 2009;
Peng et al,, 2011; Xiao et al,, 2011). These approaches typically
use carbon flux observations from eddy covariance (EC) towers to
estimate parameters.

Model-data fusion approaches can be grouped to two cat-
egories: non-Bayesian and Bayesian methods. Non-Bayesian
methods typically produce a best estimate for each parameter, but
do not quantify its uncertainty (Mahadevan et al., 2008; Xiao et al.,
2011). By contrast, Bayesian methods such as Markov chain Monte
Carlo(MCMC) generate a probability density function (PDF) for each
parameter, and the spread of the distribution as measured by stan-
dard deviation provides an estimate of the parameter uncertainty
(Braswell et al., 2005; Ricciuto et al., 2008a). The ranges and uncer-
tainty estimates resulting from MCMC will not only facilitate the
comparison of parameter values across both plant functional types
(PFTs) and sites but also lead to probabilistic estimates of carbon
fluxes. Few studies, however, have propagated parameter uncer-
tainty through model simulations and quantified the uncertainty
of regional carbon fluxes (Rayner et al., 2005).

Previous model-data fusion studies typically use data from a
single site to constrain parameters for a given PFT (Braswell et al.,
2005; Knorr and Kattge, 2005; Mahadevan et al., 2008). This is
similar to the conventional parameterization of ecosystem mod-
els that use a single value for each parameter and do not consider
the uncertainty and/or variability of the parameter. Despite numer-
ous studies on parameter estimation, few studies have assessed
the variability of parameters within a given PFT and across PFTs
(Groenendijk et al., 2011; Xiao et al., 2011).

The Upper Midwest region of northern Wisconsin and Michi-
gan, USA, is a highly heterogeneous mixture of upland forests and
lowland wetlands (Fig. 1). This region has, to our knowledge, the
highest density of EC flux sites of any region in the world (Desai
etal.,2008)as aresult of the Chequamegon Ecosystem-Atmosphere
Study (ChEAS) and related projects (http://www.cheas.psu.edu).
The ChEAS began with flux tower measurements collected at the
WLEF tall tower (Davis et al., 2003). Over the period 1998-2006,
eddy flux tower systems were deployed in 18 different sites span-
ning a range of ecosystem types and stand ages, including the
regionally representative 447-m tall tower. These landscape-scale
flux measurements have spawned a variety of complementary
research, including the initiation of three additional long-term
flux tower records in the region (Cook et al., 2004; Desai et al.,
2005; Sulman et al., 2009), deployment of nearly ten shorter-term
flux measurements (Noormets et al., 2008; Xiao et al., 2011), and
incorporation of a nearby AmeriFlux tower (University of Michi-
gan Biological station, or UMBS) into this regional network (Gough
et al., 2008).

The high density of EC flux sites in the ChEAS region makes
it a unique test bed for the assessment of parameter uncertainty
and the associated uncertainty in regional carbon fluxes. Previous
studies have used model-data fusion techniques to estimate model
parameters in the region (Ricciuto et al., 2008a; Desai, 2010; Xiao
et al,, 2011). One of the studies upscaled carbon fluxes from EC
towers to the regional scale, and showed that the uncertainty in
land cover maps could lead to significant uncertainty in regional
carbon fluxes (Xiao et al., 2011). However, no study has quantified
the uncertainty of regional carbon fluxes by propagating parameter
uncertainty through simulations.

Here we used net ecosystem exchange (NEE) observations from
EC flux sites across the ChEAS region, a simple diagnostic carbon

flux model, and a model-data fusion approach to quantify parame-
ter uncertainty and the associated uncertainty of modeled carbon
fluxes. We used a Markov chain Monte Carlo (MCMC) approach to
quantify parameter uncertainty, and propagated the uncertainty
through the regional prediction to produce probabilistic estimates
of carbon fluxes and to quantify the associated uncertainties. This
work contributes to the development of methods for obtaining
regional CO, flux estimates with uncertainty bounds.

2. Data
2.1. Flux tower data

Northern Wisconsin and Michigan, USA (Fig. 1) is an area of
temperate/sub-boreal forests and glaciated landforms with many
small glacial lakes and wetlands. The majority of upland forests
consist of mature northern hardwood forests (e.g., maple, bass-
wood, birch, and ash) and younger fast-growing aspen (Populus
termulouides) forests; coniferous species include red pine, jack pine,
eastern hemlock and white pine forests cover smaller areas (Desai
et al., 2008). Around 1/3 of the region is lowland wetlands, includ-
ing forested wetlands (e.g., black spruce, white cedar or tamarack),
shrub wetlands (alder or willow species),and open meadows (Desai
et al., 2008). The land cover is highly heterogeneous and the region
has been relatively densely sampled with EC flux towers. The land
area of our study region (Fig. 1) is approximately 1.13 x 10> km?.

We used NEE data from 13 EC flux sites in the ChEAS region,
with 12 sites in northern Wisconsin and the Upper Peninsula of
Michigan, and 1 site in the Lower Peninsula of Michigan (Table 1;
Fig. 1). These sites involve different PFTs: deciduous forests (DF, 3
sites), evergreen forests (EF, 6 sites), mixed forests (MF, 3 sites),
and woody wetlands (WW, 1 site). We used these data to optimize
the parameters of a simple diagnostic model. These data have been
described in previous publications (Cook et al., 2004; Desai et al.,
2005; Gough et al., 2008; Noormets et al., 2008; Sulman et al., 2009;
Xiaoetal.,2011). We used the half-hourly data for all sites, and only
days with no less than 75% of original half-hourly measurements
were used in our analysis. Measurements of aboveground biomass
and micrometeorological data including air temperature and pho-
tosynthetically active radiation (PAR) were also obtained for each
site.

2.2. MODIS data

We used vegetation indices (MOD13A2) (Huete et al., 2002) and
surface reflectance (MODO09A1) (Vermote and Vermeulen, 1999)
derived from the Moderate Resolution Imaging Spectroradiometer
(MODIS). For each EC site, MODIS ASCII subsets (Collection 5) for
both products were obtained from the Oak Ridge National Labora-
tory’s Distributed Active Archive Center (ORNL DAAC). The subsets
consist of 7km x 7 km regions centered on the flux tower. For each
variable, we extracted average values for the central 3 km x 3 km
area to better represent the flux tower footprint (Xiao et al., 2008).
For each variable, the quality of the value of each pixel within
the area was determined using the quality assurance (QA) flags
included in the product. At each time step, we averaged the val-
ues of each variable using the pixels with good quality within the
area to represent the values at the flux site. If none of the values
within the 3 km x 3 km area was of good quality, the period was
treated as missing.

For regional prediction of NEE, we obtained vegetation indices
and surface reflectance from the Earth Observing System (EOS)
Data Gateway for each 8-day interval over the period 2000-2007.
For each variable and for each 8- or 16-day period, two tiles
(1200 km x 1200 km) were needed to cover the ChEAS region. For
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