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To further improve the pressure recovery capability of low pressure turbine exhaust hood, an aerodynamic
optimization system has been developed on the Matlab platform. The shape optimization for a scale model of
a low pressure exhaust hood is numerically performed to maximize the mass averaged pressure recovery
coefficient while subjecting to geometric constraints. Two cubic Bezier curves are used to represent the flow
guide and the bearing cone profiles, respectively. Evaluation of the aerodynamic performance of the model is
carried out by the commercial CFD simulator CFX. The Kriging model is used as a surrogate, which establishes
a global mapping between design variables and objective function. In order to seek a balance between local
and global search, an adaptive sample criterion is employed. The optimal design exhibits a reasonable
performance improvement compared with the original design.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The low pressure exhaust hood of a condensing steam turbine is
used to connect the last stage turbine and the condenser. It recovers
the turbine leaving kinetic energy into potential energy. This pressure
recovery allows the turbine exhaust pressure lower than the
condenser pressure, thus increasing the turbine work. Tindell et al.
[1] found that approximately 15–20% pressure recovery capability
was lost in the exhaust hood. It is therefore clear that the low pressure
exhaust hood is a component that has the potential to be improved
considerably in terms of aerodynamic efficiency. Most previous
studies of exhaust hoods have been carried out by experimental and
numerical approaches, as demonstrated by Liu et al. [2], Zhang et al.
[3], and Sultanian et al. [4]. These studies help us understand the
complex three-dimensional flow characteristics in exhaust hoods.
However, the primary concern in the industry is to improve the
overall performance of exhaust hoods instead of to analyze and
understand the flow structure. A number of experimental and
analytical attempts have been made to improve turbine exhaust
system performance. Lu et al. [5] tested gas turbine exhaust volute to
select optimum geometric parameters. From the analysis of experi-
mental data, they proposed a design criterion for exhaust volutes. Mao
et al. [6] used an experimental design technique to conduct limited
model tests to get an optimized axial turbine exhaust hood
configuration. Their design process was guided by repeating trial
experiments, which required a great deal of time and costs. In recent

years, optimization based on flow analysis is becoming increasingly
popular in the field of engineering design. In some cases, evolutionary
algorithms are used to ensure reaching the global optimum. However,
the high computational costs associated with evaluating a large
number of objective functions prevent applications of evolutionary
algorithms to practical engineering design problems. In order to cut
the prohibitive costs, a low fidelity surrogate model can be used to
reduce the number of required objective function evaluations. Queipo
et al. [7] and Simpson et al. [8] reviewed various surrogate models
used in engineering design. Madsen et al. [9] demonstrated the utility
of response surface model in a diffuser design. Marjavaara et al. [10]
optimized the shape of a simplified hydraulic turbine diffuser using
response surface and radial basis neural network based optimization
strategy in conjunction with an evolutionary algorithm.

In the present work, an aerodynamic optimization system has
been developed on the MATLAB platform. The system has four
components: the geometry parameterization modelling module, the
structured mesh generator ICEM-CFD, the aerodynamic simulator
CFX, and the Kriging surrogate based optimizer. The shape optimiza-
tion for a scale model of a low pressure exhaust hood is numerically
performed to maximize the mass averaged pressure recovery
coefficient while subjecting to geometrical constraints. Results show
that the aerodynamic performance of the exhaust hood model can be
improved.

2. Geometry parameterization and optimization
problem definition

The exhaust hood model consists of an upstream extension
section, an axial–radial diffuser, and an exhaust volute. The
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longitudinal and end wall views of the model are shown in Fig. 1.
Detailed dimensions of the model are marked in the figure as
well. As shown in Fig. 2(a), two cubic Bezier curves are used to
represent the flow guide and the bearing cone profiles, respec-

tively. A cubic Bezier curve is defined by four control points and
can be written as

DðtÞ = ∑
4

i=1
PiBiðtÞ ð1Þ

Fig. 1. Schematic diagram of exhaust hood model: (a) longitudinal view, (b) end wall view.

Fig 2. Schematic diagram of (a) geometry parameterization; and (b) design domain.

Nomenclature

B Bernstein basis function
ns number of sampling points
ndv number of design variables
p static pressure
p0 total pressure
P coordinates of Bezier curve control point
r(x) correlation vector
R correlation matrix of Kriging
R(xi,xj) correlation function between xi and xj

s2(x) mean squared error of prediction
x,y Cartesian coordinates
ŷ(x) generalized least square estimator of y(x)
z(x) departure of Kriging

Greek symbols
ξ local coordinate
η local coordinate
λ optimum design vector
μ constant trend of ordinary Kriging
μ̂ maximum likelihood estimate of μ
σ2 variance
σ̂2 maximum likelihood estimate of σ2

θ correlation vector of Kriging
ε convergence tolerance

Superscripts
− mass averaged quantity

Subscripts
min minimum
max maximum
1 inlet
2 outlet
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