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a b s t r a c t

The flow of carbon between terrestrial ecosystems and the atmosphere is mainly driven by nonlinear,
complex and time-lagged processes. Understanding the associated ecosystem responses is a key chal-
lenge regarding climate change questions such as the future development of the terrestrial carbon sink.
However, high temporal resolution measurements of ecosystem variables (with the eddy covariance
method) are subject to random error, that needs to be accounted for in model-data fusion, multi-site
syntheses and up-scaling efforts.

Gaussian Processes (GPs), a nonparametric regression method, have recently been shown to capture
relationships in high-dimensional, nonlinear and noisy data. Heteroscedastic Gaussian Processes (HGPs)
are a specialized GP method for data with inhomogeneous noise variance, such as eddy covariance
measurements.

Here, it is demonstrated that the HGP model captures measurement noise variances well, outperform-
ing the model residual method and providing reasonable flux predictions at the same time. Based on
meteorological drivers and temporal information, uncertainties of annual sums of carbon flux and water
vapor flux at six different tower sites in Europe and North America are estimated. Similar noise pat-
terns with different magnitudes were found across sites. Random uncertainties in annual sums of carbon
fluxes were between 9.80 and 31.57 g C m−2 yr−1 (or 4–9% of the annual flux), and were between 2.54
and 8.13 mm yr−1 (or 1–2% of the annual flux) for water vapor fluxes. The empirical HGP model offers a
general method to estimate random errors at half-hourly resolution based on entire annual records of
measurements. It is introduced as a new tool for random uncertainty assessment widely throughout the
FLUXNET network.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modeling biosphere-atmosphere interactions on the basis of
ecosystem measurements is essential for a better understanding
of the global carbon cycle. Rising concentrations of greenhouse
gases in the atmosphere have been attributed to industrializa-
tion, human development and the resulting combustion of fossil
fuels and changes in land use. The concentration of carbon diox-
ide (CO2) is currently the highest it has been in the last 650,000
years (Siegenthaler et al., 2005). The terrestrial biosphere strongly
influences the global carbon cycle by sequestering carbon via pho-
tosynthesis while simultaneously releasing carbon via respiration
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into the atmosphere. Its total annual uptake of carbon is 123 ± 8 Gt
(Beer et al., 2010) and some terrestrial ecosystems act as long-term
carbon sinks.

Providing high resolution measurements of the net CO2, H2O
and energy fluxes, the FLUXNET observational network (Baldocchi,
2008) is a fundamental data source toward identifying the con-
tributions of various ecosystems to the global carbon sink. The
CO2 exchange between biosphere and atmosphere is the difference
between carbon assimilation by photosynthesis (gross primary
production, GPP) and release of carbon to the atmosphere (ecosys-
tem respiration, ER). In this study, focusing on forest ecosystems, we
note the ecosystem net CO2 flux as Net Ecosystem Production (NEP),
which is opposite in sign to Net Ecosystem Exchange (NEP = − NEE).
Positive NEP fluxes correspond to a net uptake of CO2 by the bio-
sphere and negative NEP fluxes stand for a net release of CO2 to the
atmosphere. The water vapor flux is hereafter denoted as LE (latent
heat flux).
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Data sets obtained by the eddy covariance method have the
following properties: multidimensional, fragmented and noisy
(Moffat et al., 2010). The noise in the flux data is caused by dif-
ferent sources of error. On one hand, there are random errors,
which are due to measurement instrument errors, the stochas-
tic nature of turbulence, and the varying footprint of the towers.
On the other hand, flux measurements are subject to systematic
errors, which are caused by inaccurate calibration, and measure-
ments under conditions violating the assumptions of the eddy
covariance method, including problems related to advection and
non-flat terrain (Aubinet et al., 2012). While systematic errors are
generally addressed through data filtering (such as u*-filtering), all
data still suffers from random measurement error (Hollinger and
Richardson, 2005). It has been noted that in practice it can be hard to
disentangle random and systematic errors, since many errors have
both a random and systematic component and operate at varying
time scales (Richardson et al., 2012). Even under the assumption
that all systematic errors have been removed from the data it is
known that random errors are considerably large over the short
averaging periods of the high-frequency measurements (i.e., min-
utes or hours) and cannot be ignored even on the annual timescale
(Richardson et al., 2012).

Uncertainty estimates are needed to quantify the mismatch
between models and data, which is essential for model opti-
mization, ecosystem model validation against flux data, multi-site
syntheses and regional-to-continental integration efforts (Raupach
et al., 2005; Richardson et al., 2008). Moncrieff et al. (1996) has
suggested that eddy covariance studies should always report mean
fluxes together with their systematic and random uncertainty com-
ponents by convention. If uncertainties are not considered in a
statistically rigorous and transparent manner, model structures
and model predictions are less reliable or might not be reached
at all. Recently, a code of best practice for an open assessment of
uncertainties in model-data fusion techniques has been proposed
(Keenan et al., 2011), advising to evaluate data errors in an open
and realistic way and feed forwarding them into the model frame-
work. To start with, random error estimates should be propagated
through gap-filling and partitioning fluxes into their components,
in particular for carbon and water vapor fluxes. Currently, methods
of assessing measurement error differ from site to site and there is
no single one method that is widely used throughout the FLUXNET
network.

Numerous studies have made efforts to estimate random errors
in eddy covariance measurements. The paired tower method
(Hollinger et al., 2004) uses simultaneous measurements of two
towers separated by only a few hundred meters, in the same
ecosystem but with nonoverlapping footprints. The between tower
variability was found to be lower than the interannual variability
in NEP. Uncertainties of the flux data could therefore be estimated
by the standard deviations of the differences between the two
towers and CO2 flux random errors were shown to vary season-
ally. Since this method cannot be applied widely throughout the
network, a 24-h differencing approach (Hollinger and Richardson,
2005; Richardson et al., 2006) was developed on the same idea of
paired observations, but with “time traded for space”, i.e., flux mea-
surements from a single tower are compared on two successive
days at exactly the same time of day. Nearly identical environmen-
tal conditions are assured by fixed thresholds of meteorological
variables, but are frequently not met, and therefore the number
of data points for an analysis is reduced. Key results are that the
random error follows rather a double-exponential than a normal
distribution and it increases as a linear function of the flux magni-
tude (i.e., a heteroscedastic noise variance).

The model residuals method (Richardson and Hollinger, 2005;
Richardson et al., 2008) infers the first four moments of the error
distributions from the model residuals (the difference between

predictions from a model and measured fluxes). The result of
heteroscedastic errors was confirmed and a spectral analysis of
the model predictions suggested autocorrelated model residu-
als, which exhibit site-specific differences. Lasslop et al. (2008)
estimates random errors based on the standard deviations of
the moving windows and model residuals produced from the
MDS (marginal distribution sampling) gap-filling algorithm of
Reichstein et al. (2005) and the autocorrelation of the random
errors was found to be usually below 0.6 at a lag of 0.5 h.

While the methods above have in common that they estimate
the total flux random error, micrometeorologists have made efforts
to estimate the different sources of random error in flux mea-
surements one by one. For example, turbulence sampling errors
(Lenschow et al., 1994; Finkelstein and Sims, 2001) are attributed
mainly to incomplete sampling of large eddies, which result in 30
minute average fluxes that are not representative of the actual flux.
There are more recent methods tackling this problem, such as a
spatial filter method (Salesky et al., 2012). The random error com-
ponent resulting solely from instrument error can be estimated
by using data from towers that are in the vicinity of each other
(Eugster et al., 1997; Dragoni et al., 2007; Schmidt et al., 2012),
similar to the paired tower approach (Hollinger et al., 2004). Often
the resulting instrument error estimates are hard to distinguish
from other sources of error and also assume that both flux systems
are viewing identically functioning footprints. Other studies imply
that instrument noise does not have an impact on random error
of carbon dioxide fluxes (Rannik et al., 2006). In general, variable
source areas of fluxes within individual half-hours due to changes
in wind direction and velocity can add to the random error on top of
sampling and instrument errors. Billesbach (2011) provides a good
review and comparison of several of the aforementioned methods
and suggests a new method for estimating instrument noise called
random shuffle, which shuffles one of the flux covariates in time
and attributes the remaining covariance to instrument noise.

Here, the ability of supervised Machine Learning (ML) methods
as a tool to estimate total random errors in flux measurements is
explored. ML methods allow to extract ecosystem response mech-
anisms and associated uncertainties directly from ecosystem data.
The term “Machine Learning” refers to a set of methods for the gen-
eration of mathematical algorithms by learning characteristics and
patterns through generalizing from sample data. Probably the most
widely used ML algorithms in the eddy covariance literature are dif-
ferent forms of the Artificial Neural Networks method (Papale and
Valentini, 2003; Schmidt et al., 2008; Moffat et al., 2010). Another
one of the ML methods, Gaussian Processes (GPs), was shown to
be applicable as a nonlinear regression tool on multivariate, noisy
data sets with different degrees of nonlinearity (Rasmussen, 1996).
More recently, GPs have been applied in biological or financial mod-
els (Gao, 2004; Sun et al., 2010; Macke et al., 2011). Heteroscedastic
Gaussian Processes (HGPs) are a specialized GP method for data
with inhomogeneous noise variance, as often observed in eddy
covariance measurements. The objective of this study is to assess
HGPs as a tool to explore ecological data sets, focusing at the abil-
ity to estimate data uncertainties, and consequently, improve the
understanding and estimation of the total random error in eddy
covariance measurements.

2. Materials and methods

2.1. Data and site descriptions

This study is based on half-hourly eddy covariance and mete-
orological data from six different measurement sites taken from
the CarboeuropeIP database and from the AmeriFlux database.
All sites are forests including different types such as deciduous
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