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This paper presents a mathematical model for treating turbulent combusting flows in a moving porous bed,
which might be useful to design and analysis of modern and advanced biomass gasification systems. Here,
one explicitly considers the intra-pore levels of turbulent kinetic energy and the movement of the rigid
solid matrix is considered to occur at a steady speed. Transport equations are written in their time-and-
volume-averaged form and a volume-based statistical turbulence model is applied to simulate turbulence
generation due to the porous matrix. The rate of fuel consumption is described by an Arrhenius expression
involving the product of the fuel and oxidant mass fractions. Results indicate that fixing the gas speed and
increasing the speed of the solid matrix pushes the flame front towards the end of the reactor. Also, since
the rate of production of turbulence is dependent on the relative velocity between phases, as the solid velocity
approaches that of the gas stream, the level of turbulence in the flow is reduced.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Energy production based on biomass combustion has called the
attention of the world for its potential substitution of non-renewable
fossil fuels. Biomass pelletization and preparation for energy production
systems may involve a moving porous bed [1–3] in which an exother-
mic reaction occurs. Examples of studies on such systems are given by
Ryu et al. [4], Boman et al. [5] and Shimizu et al. [6] who presented
mathematical models for gasification and combustion of renewable
fuels. Kayal and Chakravarty [7], Rogel et al. [8] and Nussbaumer et al.
[9] investigated technologies to cope with the problem of pollutant
emission during combustion and co-combustion of biomass. Related in-
vestigations concerning studies on reactive flows in permeable media
[10–15], including recent reviews on combustion of gases [16] and
liquids [17] in the so-called porous burners, have also contributed to
the modeling of flows with combustion through a permeable medium.
Recent developments on free flame modeling [18, 19] will further
benefit the analyses of the heterogeneous systems just reviewed.
Accordingly, the ability to more realistic model such devices is of great
advantage to the analysis and optimization of a number of energy, food
and materials production processes.

Motivated by the foregoing, in a series of papers a general mathe-
matical model for turbulent flow in porous media, including flows
with macroscopic interfaces [20], buoyant flows [21] and impinging
jets, with [22, 23] and without [24] thermal non-equilibrium, was de-
veloped and documented in a book [25]. Such model was further

extended to include movement of the solid phase for non-reacting
flows [26] with heat transfer [27]. Subsequently, combustion of gases
within a fixed porous medium was also considered [28, 29].

The objective of this contribution is then to combine the previous
separated analyses of movement of a porous bed along with an inert
flow [26, 27] with that of combustion of a gaseous fuel through a fixed
medium [28, 29]. By that, a more complete and more general model is
investigated as solutions of a broader range of problems are sought,
which aim at simulate, in a more realistic fashion, modern equipment
for energy production using renewable fuels.

2. Macroscopic flow model

As mentioned, the thermo-mechanical model here employed is
based on concepts already fully described in the literature [25]. In
that work, transport equations are volume averaged over a Represen-
tative Elementary Volume (REV) according to the Volume Averaging
Theorem [30–32]. In addition, the use of time decomposition of flow
variables, followed by standard time-averaging procedure, was ap-
plied to model turbulence. As the entire equation set is already fully
available in the open literature, these equations will be reproduced
here and details about their derivations can be obtained in the afore-
mentioned references. Essentially, in all the above-mentioned work,
the flow variables are decomposed in a volume mean and a deviation
(classical porous media analysis) in addition to being also decom-
posed in a time-mean and fluctuating values (classical turbulent
flow treatment). As said, because mathematical details and proofs of
such “double-decomposition” concept are available in a number of
papers in the literature, they are not repeated here. Only final equa-
tions in their steady-state form are presented below.
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2.1. Macroscopic slip velocity

In order to analyze the effect of the motion of the permeable struc-
ture, one needs first to define velocities and their averages relative to
a fixed representative elementary control-volume. One should point
out, however, that here only cases where the solid phase velocity is
kept constant will be considered.

A moving bed crosses a fixed reactor in addition to a flowing fluid,
which is not necessarily moving with a velocity aligned with the solid

phase velocity (Fig. 1). The steps below show first some basic defini-
tions prior to presenting a proposal for a set of transport equations for
analyzing such systems.

A general form for a volume-average of any property φ, distribut-
ed within a phase γ that occupy volume ΔVγ , can be written as [32],

〈φ〉γ ¼ 1
ΔVγ

∫
ΔVγ

φdVγ : ð1Þ

In the general case, the volume ratio occupied by phase γ will be
ϕγ ¼ ΔVγ=ΔV .

If there are two phases, a solid (γ=s) and a fluid phase (γ= f),
volume average can be established on both regions. Also,

ϕs ¼ ΔVs=ΔV ¼ 1−ΔVf =ΔV ¼ 1−ϕf ð2Þ

and, for simplicity of notation, one can drop the superscript “f ” to get
ϕs=1−ϕ. For permeable media, phi is known as porosity.

As such, calling the instantaneous local velocities for the solid and
fluid phases, us and u, respectively, one can obtain the average for the
solid velocity, within the solid phase, as follows,

〈u〉s ¼ 1
ΔVs

∫
ΔVs

us dVs ð3Þ

which, in turn, can be related to the average velocity referent to the
entire REV as,

uS ¼
ΔVs

ΔV

z}|{ð1−ϕÞ

1
ΔVs

∫
ΔVs

us dVs

|{z}
〈u〉s

: ð4Þ

A further approximation herein is that the porous bed is rigid and
moves with a steady average velocity uS. Note that the condition of
steadiness for the solid phase gives uS ¼ ūS ¼ const where the over-
bar denotes, as usual in the literature, time-averaging.

For the fluid phase, the intrinsic (fluid) volume average gives, after
using the subscript “i” also for consistency with the literature,

〈ū〉i ¼ 1
ΔVf

∫
ΔVf

ūdVf : ð5Þ

On a total-volume basis, both velocities can then be written as,

ūD ¼ ϕ〈ū〉i;uS ¼ 1−ϕð Þ〈u〉s ¼ const: ð6Þ

where, ūD is the average surface velocity (also known as seepage, su-
perficial, filter or Darcy velocity).

In the general case, ūD and uS need not to be aligned with each
other as in the drawing of Fig. 1. For a general three-dimensional
flow they are written in Cartesian coordinates as,

ūD ¼ ūD îþ v̄D ĵþ w̄D k̂ ; uS ¼ uS îþ vS ĵþwS k̂ ð7Þ

where u, v, and w are the Cartesian components.
A total-volume based relative velocity is defined as,

ūrel ¼ ūD− uS: ð8Þ

Further,

ūrel ¼ ϕ〈ū〉i− 1−ϕð Þ〈u〉s; ūrel ¼ ϕ 〈ū〉i þ 〈u〉s
� �

−〈u〉s: ð9Þ

Nomenclature

Latin characters
A Pre-exponential factor
cF Forchheimer coefficient
cp Specific heat
D=[∇u+(∇u)T]/2 Deformation rate tensor
D‘ Diffusion coefficient of species ‘
Ddiff Macroscopic diffusion coefficient
Ddisp Dispersion tensor due to dispersion
Ddisp, t Dispersion tensor due to turbulene
Deff Effective dispersion
K Permeability
kf Fluid thermal conductivity
ks Solid thermal conductivity
Keff Effective Conductivity tensor
m‘ Mass fraction of species ‘
Pr Prandtl number
Sfu Rate of fuel consumption
T Temperature
u Microscopic velocity
uD Darcy or superficial velocity (volume average of u)

Greek characters
α Thermal diffusivity
βr Extinction coefficient
ΔV Representative elementary volume
ΔVf Fluid volume inside ΔV
ΔH Heat of combustion
μ Dynamic viscosity
ν Kinematic viscosity
ρ Density
ϕ ϕ ¼ ΔVf �ΔV, Porosity
ψ Excess air-to-fuel ratio

Special characters
φ General variable
〈φ〉i Intrinsic average
〈φ〉v Volume average
iφ Spatial deviation
ϕ— Time average
ϕ′ Time fluctuation
|φ| Absolute value (Abs)
φ Vectorial general variable
( )s, f solid/fluid
( )eff Effective value, ϕφf+(1−ϕ)φs

( )ϕ Macroscopic value
( )fu Fuel
( )ox Oxygen
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