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A B S T R A C T

Context: Land-cover change in tropical mountains is a significant concern for the loss of biodiversity and eco-
system function. In the eastern Himalaya, knowledge on the factors driving these changes is currently inadequate
to development conservation and management plans.
Objectives: We computed land-cover change over a 23-year period for the Sikkim Himalaya in India for the
elevation range 800–2800m using Landsat satellite data and an extensive set of ground measurements of ve-
getation types and other landuse. We then tested how these land-cover changes may be influenced by topo-
graphy, mediated through decisions on landuse.
Methods: We carried out supervised classification using ‘Random Forests’, and ensemble-based classification
algorithm that is robust and accurate. We then used linear discriminant analyses to test which of seven common
topographical variables can be used to discriminate the different land-cover types.
Results: The primary forest in the 800–2200m elevation range was warm broadleaf forest, whereas the primary
forest in the elevation 2200m −2800m was Fagaceae dominated forest. Forest cover declined by over 30% in
warm broadleaf forest, and primary forest declined by 16% overall, with concomitant increases in secondary
forest and agriculture. Elevation was the strongest discriminant of landuse, followed by slope and aspect, pre-
sumably reflecting peoples' choice on landuse based on topography.
Conclusions: Tropical montane forests continue to decline in the Sikkim Himalaya, particularly at lower eleva-
tions. Topographical factors determine landuse decisions by local communities.

1. Introduction

Tropical forests continue to decline worldwide, mainly due to
agricultural expansion, timber exploitation, and industrial develop-
ment. More than 40 million hectares of primary forest have been
transformed globally since year 2000, and much of this loss has oc-
curred in the tropics (Hansen et al., 2013; Keenan et al., 2015). An
equal or greater area of forest was also degraded by excessive resource
extraction, grazing by livestock, and fire (Laurance, Sayer, & Cassman,
2014). In fact, the current global forest cover estimates show that
modified vegetation and naturally-regenerated secondary forest to-
gether account for a greater fraction (57%) of total forest cover than
primary forest (36%) (Laurance et al., 2014). While continental regions
have seen significant forest regrowth, which calls for a deeper

perspective on forest transitions (Mather, 1992, 2007), tropical defor-
estation and degradation continue to occur, and contribute to land-
cover change (Turner, Lambin, & Reenberg, 2007) and carbon dioxide
emissions to the atmosphere. The ensuing climatic changes exacerbate
other problems associated with land-cover change (DeFries et al., 2002)
and together constitute the largest threat to global biodiversity and
ecosystem functioning, particularly in species-rich regions such as
global biodiversity hotspots.

Within tropical latitudes, land-cover change has been greater in
lowland areas, where the topography is more favorable for agriculture,
plantations, and settlement (Achard et al., 2007; Hansen et al., 2013).
However, tropical mountain regions are also being transformed in si-
milar ways (Ataroff & Rada, 2000; Cayuela, Benayas, & Echeverría,
2006). Due to hard physical boundaries and complex and variable
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climatic conditions, tropical montane species may be more vulnerable
than lowland species to environmental changes (Sheldon, Yang, &
Tewksbury, 2011). In mountainous terrain, environmental variables
change rapidly and result in complex effects on the microclimate.
Species are therefore segregated and maintained along steep gradients
with narrow ranges implying greater species loss due to habitat de-
struction and degradation (Bawa & Seidler, 2015). The first step to-
wards understanding the impact of these transformations on biodi-
versity is to obtain accurate assessments of land-cover changes in
tropical mountain regions.

Here we study the influence of topography on recent land-cover
change that occurred during 1990–2013 in the Teesta River basin of the
Sikkim Himalaya in India. This landscape is part of the Eastern
Himalaya Biodiversity Hotspot (Mittermeier et al., 2005) and harbors
species-rich tropical forest at middle elevations. There are relatively
few reports on land-cover change in the Indian Himalaya, and even
those focus on the Western and Central regions (Rao & Pant, 2001),
while the Eastern Himalaya remains largely unexplored (Lele & Joshi,
2008). It appears that the middle hills of the Himalaya have been
subjected to deforestation for decades (Ramakrishnan & Kushwaha,
2001), which is a matter of concern given that diversity often peaks at
intermediate elevations (Sandel & Svenning, 2013), The lowest eleva-
tions (< 800m above mean sea level (a.m.s.l.)) have long since been
cleared for settlements and forestry plantations, while conifer-domi-
nated forests continue to be present at high altitudes. Our goal in
analyzing land-cover change here is to evaluate how topographical
factors may have influenced practices or processes that led to the de-
struction and degradation of primary broadleaf forest. We hypothesize
that topography influences the spatial distribution of changes in land-
cover through its influence on decisions concerning land use. Our
analysis constitutes the first step towards estimating any environmental
consequences that may have occurred due to changes in land-cover.

2. Methods

2.1. Study area and land-cover

Our study area is the mid-elevation region of the Teesta River basin
of the Sikkim Himalaya. Sikkim is located in the Eastern Himalaya
biodiversity hotspot in India and extends within coordinates 27° 04′ 46″
to 28° 07′ 48″ N and 88° 00′ 58″ E and 88° 55′ 25″ E, covering an area of
7096 km2 (Fig. 1). The region has high topographical relief, with ele-
vation ranging from 300m to well over 5000m, and the landscape
includes the world's third highest mountain Khangchendzonga peak at
8586m above m.s.l. (Tambe, Arrawatia, & Sharma, 2011). The complex
topography creates diverse bioclimatic zones ranging from near tro-
pical, subtropical, and lower temperate to upper temperate, subalpine
evergreen, alpine evergreen, alpine shrubs and meadows. The sub-
tropical region in the landscape extends over 1000–2000m elevation
and harbors warm broadleaf forest (Grierson & Long, 1991), also known
as subtropical forest or East Himalayan subtropical wet hill forest
(Champion & Seth, 2005). It is the most diverse and dynamic vegetation
system in the landscape (Acharya, Chettri, & Vijayan, 2011a). The
broadleaf forest found at higher altitudes (2000–2800m) is dominated
by Fagaceae species (Grierson & Long, 1991). These two formations are
generally difficult to distinguish as they are structurally very similar
and share many species, with the transition from one to another being
gradual and continuous.

We studied a large mid-elevation range (800m–2800m a.m.s.l) in
Sikkim, which has multiple types of land-cover, and identified the fol-
lowing broad types based on extensive field surveys:

i) Primary forest: We designated all the primary mixed species for-
ests in a single class as primary forests (broadleaf forest).

ii) Secondary forest: We designated secondary forests as those forest
areas that are regenerating patches of vegetation after clear felling

for agriculture, or other types of modification of old-growth forests
alter tree density and composition.

iii) Alder forest: This is a unique vegetation formation, consisting of
single species plantations of Alnus nepalensis, D. Don (Family -
Betulaceae), a pioneer species typically found in the 1500–2000 m
elevation range.

iv) Agriculture and fallow: Agriculture is widespread at low and
middle elevations and includes maize and paddy based farming.
Substantial agricultural land is also maintained as fallows.

v) Settlements: Small townships and rural settlements, which occur
scattered across the landscape.

vi) Other: Other identifiable aspects of land-cover include water bodies
and bare ground.

2.2. Remotely-sensed data

We used Landsat TM/ETM + images and supervised land-cover
classification to map forest cover and forest-cover change during the
period 1990 to 2013 (Table 1). We selected images after thorough
screening to ensure minimal influence of cloud cover and atmospheric
haze. Despite the availability of numerous images, very few met our
requirements for analyses, and we finally chose one each of pre- and
post-monsoon images for years 1990, 2005 and 2013. We clipped the
images to the 800–2800m elevation range using the ASTER DEM Di-
gital Elevation Model (DEM) and obtained a total study area of
2206 km2. Since the study area has high topographic relief, some to-
pographical aspects are not fully visible to the satellite sensors, which
creates “shadow” regions in the images. ‘Hard shadow’ areas with
completely dark pixels cannot provide any spectral information so we
excluded them from further analyses (Tan et al., 2013).

2.3. Ground measurements and training data

We collected ground data through extensive field surveys and ve-
getation sampling during 2011–2013. We recovered ground truth in-
formation at 20 to 30 locations for each land-cover type using a GPS
unit. Further details are available in the Supplementary Material.

2.4. Land-cover classification

We conducted supervised classification of land-cover using ‘Random
Forests’ (RF), an ensemble based decision-tree classification algorithm.
Here several regression trees are generated and a consensus tree is
derived by averaging the predictions of the individual trees, which
improves classification accuracy (Cutler et al., 2007). For mapping
mountainous terrain, RF has been reported to outperform other ap-
proaches, and apart from increased classification accuracy, RF can
measure variable importance, work with larger data sets, and is robust
to outliers and over-fitting of data (Rodriguez-Galiano, Ghimire, Rogan,
Chica-Olmo, & Rigol-Sanchez, 2012). We used 18 predictor variables
including five Landsat Bands, four vegetation indices (Specific Leaf
Area Vegetation Index, Normalized Difference Vegetation Index,
Brightness Index, and Normalized Difference Moisture Index), and
seven topographic variables (including elevation, slope, aspect, rug-
gedness, wetness, profile curvature, and plan curvature) to build the RF
model (see Supplementary Material).

To detect and compute land-cover change over time (1990–2013),
we obtained classified images from the predictions of the RF model and
used the land change modeler module in IDRISI Selva (Eastman, 2012).
To measure the importance of individual predictor variables, we ex-
cluded the given predictor from the analysis and then computed the
mean decrease in classification accuracy compared to the when all
predictors were used (Cutler et al., 2007).
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