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A B S T R A C T

Rising seas will impact millions of coastal residents in coming decades. The vulnerability of coastal populations
exposed to inundation will be greater for some sub-populations due to differences in their socio-demographic
characteristics. Many climate risk and vulnerability assessments, however, model current populations against
future environments. We advance sea-level rise risk assessments by dynamically modeling environmental change
and socio-demographic change. We project three scenarios of inundation exposure due to future sea-level rise in
coastal Georgia from 2010 to 2050. We align the sea-level rise projections with five population projection
scenarios of socially vulnerable sub-populations via the Hamilton-Perry method and the theory of demographic
metabolism. Our combined fast sea-level rise and middle population scenarios project a near doubling of the
population exposed, and a more than five-fold increase for those at risk (i.e., residing in a census tract with high
social vulnerability) and most at risk (i.e., high social vulnerability and high exposure) compared to the same
estimate based on 2010 population data. Of vulnerable sub-populations, women had the largest absolute in-
crease in exposure for all scenario combinations. The Hispanic/Latinx population's exposure increased the lar-
gest proportionally under the fast and medium sea-level rise projections and elderly people's (65+) under the
slow sea-level rise scenario. Our findings suggest that for coastal areas experiencing rapid growth (or declines) in
more socially vulnerable sub-populations, estimates based on current population data are likely to underestimate
(or overestimate) the proportion of such groups' risk to inundation from future sea-level rise.

1. Introduction

Global mean sea level is forecast to rise by as much as 2 m or more
this century (DeConto & Pollard, 2016; Kopp et al., 2017, 2014; Sweet
et al., 2017; Vermeer & Rahmstorf, 2009). By 2060, as much as 12% of
the global population—1.4 billion people—could live in the low ele-
vation coastal zone, many with the sustainability of their livelihoods
linked to coastal environments (Neumann, Vafeidis, Zimmermann, &
Nicholls, 2015). Under equal exposure to climate change hazards,
however, the vulnerability of some coastal sub-populations will be
much greater due to differences in their socio-economic characteristics
(Gaillard et al., 2014; Jurgilevich, Räsänen, Groundstroem, & Juhola,
2017; Lutz and Muttarak 2017; Otto et al., 2017; Shepherd and KC
2015). Numerous case studies support the connections between in-
creased vulnerability to environmental hazards and multiple socio-
economic characteristics including non-white racial and non-Hispanic
ethnic groups, women, people with low educational attainment or
living in poverty, and both the young and elderly, as well as many other
socio-economic factors (Bullard 1990; Bolin, Jackson, and Crist 1998;
Ngo, 2001; Wisner, Blaikie, Cannon, & Davis, 2004; Bolin, 2007;
Neumayer and Plümper 2007; Wailoo, 2010; Rufat, Tate, Burton, &

Maroof, 2015; Shepherd and KC 2015). This suggests that assessing the
risk of the most vulnerable coastal populations to inundation exposure
from sea-level rise is increasingly important for improving coastal
adaptation planning and policies. In this article, we define risk as a
function of vulnerability, exposure, and hazard (see Jurgilevich et al.,
2017).

Many climate risk and vulnerability assessments, however, model
current populations against future environments (e.g., Emrich & Cutter,
2011; Frazier, Wood, Yarnal, & Bauer, 2010; Kopp et al., 2017; Kulp
and Strauss 2017; Martinich, Neumann, Ludwig, & Jantarasami, 2013;
Shepherd and Binita 2015; Spanger-Siegfried et al., 2017). This ap-
proach renders methods for assessing future climate risk as both static
(population) and dynamic (environmental change). Only recently have
studies of sea-level rise impacts started accounting for population
change simultaneously with the associated environmental change ex-
pected from inundation (Neumann et al., 2015; Hauer, Evans, and
Mishra 2016; Hauer 2017). These studies are limited to exposure as-
sessments, however, quantifying the total future population expected to
be impacted by sea-level rise inundation. They do not account for who
that coastal population will be, in other words, its socio-demographic
characteristics. Previous studies have compared future inundation
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exposure against either 1) current socially vulnerable populations, or 2)
undifferentiated totals of future populations. Few, if any, have com-
pared future inundation exposure against future projections of socially
vulnerable sub-populations. Many of the previous studies have shown
that a substantial portion of current coastal populations in the United
States have sub-populations with increased levels of social vulner-
ability. Given this and the well-documented historical growth in US
coastal populations (Crossett et al., 2013; Culliton et al., 2010) and its
projected future growth (Hauer et al., 2016), such a temporal mis-
alignment of comparing current social vulnerability against future in-
undation exposure will likely lead to incorrect estimates of the future
risk of coastal populations.

The temporal misalignment in previous studies is due to limited
methodological approaches for analyzing gradual environmental
change in concert with multi-decadal socio-demographic change
(Jurgilevich et al., 2017). Recent theoretical developments in demo-
graphy, however, offer an approach for overcoming this shortcoming
through a multi-dimensional predictive model of socio-demographic
change called demographic metabolism (Lutz, 2013; Lutz and Muttarak
2017). Specifically designed for climate change research, demographic
metabolism is a theoretical framework that argues that “the process of
social change can be analytically captured through the process of
younger cohorts replacing older ones” (Lutz, 2013, p. 284). The cohort
aged 15–19 in 2015 becomes the 20–24 cohort in 2020 after adjusting
for the components of population change: births, deaths, and migration.
This approach creates reliable socio-demographic forecasts over dec-
adal time scales for two key reasons: 1) many socio-demographic
characteristics are either established at a young age (e.g., the propor-
tion of people with a high school education aged 25–29 in 2015 is a
good predictor of those aged 60–64 with a high school education in
2050) (Lutz and KC 2011), and 2) socio-demographic change is em-
bedded within the age structure (e.g., life course analysis shows that
earnings steadily increase after age 18, peaking around age 65, before
declining through retirement) (Tamborini, Kim, and Sakamoto 2015).

In this article, we advance sea-level rise risk assessments by dyna-
mically modeling environmental change and socio-demographic change
of coastal populations. Specifically, we forecast inundation exposure
due to future sea-level rise along with projections of the socio-demo-
graphic indicators of social vulnerability for populations in coastal
Georgia. Given the high projections of US coastal population growth
(Hauer et al., 2016), we examine the potential underestimation of
previous estimates of social vulnerability to sea-level rise. We assess the
total and proportional change in vulnerable sub-populations at risk to
inundation by comparing estimates based on 2010 and 2050 population
data. Our analysis allows us to capture the dynamic spatio-temporal
relationship between shifts in socio-demographic indicators driving
social vulnerability and increasing levels of inundation exposure from
future sea-level rise.

2. Methods

2.1. Study area

We selected coastal Georgia in the United States as our study area
given its rural-to-urban settings and diverse demographics including
relatively high numbers of people with the characteristics that are in-
dicated to increase social vulnerability (Fig. 1) (Cutter, Boruff, and
Shirley 2003; Wisner et al., 2004). Of the greater than 500,000 people
residing in the six coastal county region, roughly 227,000 (44%) are
racial and/or ethnic minorities, approximately 87,000 (18%) are living
in poverty, and over 38,000 (11%) of those 25 years and older have less
than a high school equivalent educational attainment level (US Census
2012). Coastal Georgia's current population that could be exposed to
inundation from sea-level rise of 0.9–1.8 m by the year 2100 is esti-
mated to be between approximately 51,000 and 96,000, respectively
(Hauer et al., 2016). The exposed population is expected to nearly

double when accounting for Georgia's population growth to between
approximately 93,000 and 179,000 people by the year 2100 (Hauer
et al., 2016). Studies based on 2010 US Census population data estimate
that there are approximately 5000 Georgia residents with high social
vulnerability living within 0.9 m of the high tide line (Strauss et al.,
2014). Taking into account the significant population growth projected
for the region, however, it is likely that the socially vulnerable popu-
lation of the future will be much greater. Moreover, being able to
identify and quantify whom those socially vulnerable populations will
be is of critical importance for targeting adaptation planning and po-
licies at vulnerable sub-populations.

2.2. Population projections

One of the most well-accepted approaches for projecting popula-
tions is the cohort-component method, which uses migration, birth, and
death rates to forecast population changes within an area (Smith,
Tayman, & Swanson, 2001). Given the difficulty of obtaining these data
for some areas and smaller geographies such as US Census tracts, a
simpler approach was proposed, known as the Hamilton-Perry method,
which uses cohort-change ratios (CCR) between the two most recent
census counts to project populations by age and sex, and sometimes
race or ethnicity (Hamilton & Perry, 1962; Swanson, Schlottmann, &
Schmidt, 2010). Using the Hamilton-Perry method based on 2000–2010
US Census data and a series of controlling factors and limits, we pro-
jected populations by age, sex, race, and ethnicity in 10-year cohorts
from 2010 to 2050 at both the county (n = 6) and census tract levels
(n = 121) for the Georgia coast following:
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where n is the cohort interval, x is the starting age of the cohort, nPx+y,l

is the population aged x + y to x + y + n in the most recent census (l),
nPx,b is the population aged x to x + n in the second most recent census
(b), and y is the number of years between the two censuses (l – b) ac-
cording to Smith et al. (2001).

Given the 10-year interval of most US Census data, the age cohort of
10–19 is the minimum for applying the CCR. Child-woman ratios
(CWR) are used to project populations of the 0–9 age cohort. We made
two adjustments to Smith et al.’s (2001) recommendation for assessing
CWRs. First, we used 10-year age cohorts instead of five-year age co-
horts because our projection interval was 10 years. Second, we assessed
the combined CWR for the population of male and female children due
to low counts for some groups. We calculated CWRs for the launch
year's population by calculating the ratio of children aged 0–9 to
women aged 15–49 following:
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We divided this combined CWR by two before calculating the pro-
jected target population of male and female children, which assumes an
equal birth rate for the sexes. As we projected in 10-year age cohorts
over 10-year periods, we used half of the 10–19 aged female population
count to ascertain the number of women 15–19 to be included in the
35-year window in equation Eq. (2).

Two challenges emerge when projecting populations for sub-county
geographies such as census tracts (Swanson et al., 2010). A common
challenge is the frequent changes that occur with boundaries between
census collection years. To overcome this first challenge, we applied the
Longitudinal Tract Database's conversion tool (Logan, Xu, and Stults
2014) to each 2000 census tract data table to normalize the data to
2010 census tract boundaries. Another common challenge is specific to
the Hamilton-Perry method, which can lead to forecast errors and up-
ward bias in rapidly growing areas (Smith et al., 2001). This is due to
small populations, particularly those that result in small denominators
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