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A B S T R A C T

Unmanned aerial vehicles (UAVs) or drones are increasingly proposed for medical uses due to their potential to
transport medical supplies quickly and efficiently. A prototype medical drone that is equipped with an on-board
automated external defibrillator (AED) was announced recently to significantly reduce the time it takes for an
AED to arrive to a patient's side. As drones are battery-operated and have limited service range, a network of
medical drones is required to adequately provide service to a large area. This paper developed a new spatial
optimization model, the backup coverage location problem with complementary coverage (BCLP-CC), to aid in
the deployment of a network of AED enabled medical drones. By explicitly integrating backup coverage and
continuously distributed demand, the BCLP-CC can optimally place drones and the corresponding launch sites
while significantly improving backup coverage with minimal loss of primary coverage. Our results show that
90.4% of historical out-of-hospital cardiac arrests in Salt Lake County can be responded to within 1 min by using
71 drones and 68 launch sites. In addition, 58.9% of incidents can be served by two or more drones, a significant
improvement over existing models. This study shows that drones could significantly reduce life-saving equip-
ment travel times for victims of cardiac arrest by appropriately siting them, which will motivate further research
in using UAVs or drones for emergency medical purpose.

1. Introduction

Unmanned aerial vehicles (UAVs) have routinely been used for re-
mote sensing, aerial imagery collection, and military purposes
(Everaerts, 2008). UAVs may soon be used to transport goods quickly,
safely, and efficiently to both accessible and inaccessible terrain
(Misener, 2014; Thiels, Aho, Zietlow, & Jenkins, 2015). Using UAVs or
drones for medical purposes has only recently been seriously con-
sidered. Thiels et al. (2015) discuss how drones can potentially be used
to transport medical supplies such as blood derivatives and pharma-
ceuticals to hospitals, remote areas, and mass causality incidents. In
addition to transporting medical supplies, drones may have the ability
to provide other medical treatments and equipment.

Out-of-hospital cardiac arrest is a major issue in health care. It is
estimated that between 180,000 and 400,000 deaths occur due to
sudden cardiac arrest (SCA) in the United States each year (Kong et al.,
2011). Most of these deaths occur outside of the hospital and only one
to five percent of patients survive (Becker, Pat Ostrander, Barrett, &
Kondos, 1991; Caffrey, Willoughby, Pepe, & Becker, 2002; Cummins,
Ornato, Thies, & Pepe, 1991; Galea et al., 2007). It has been shown that
automated external defibrillator (AED) use can significantly improve
cardiac arrest survival rates (Caffrey et al., 2002; Cummins, Bergner,

Eisenberg, & Murray, 1984; Marenco, Wang, Link, Homoud, & Estes,
2001). In addition to AED use, emergency medical service (EMS) re-
sponse time has been tied to survival rates. It is estimated that reducing
response times by 1 min can improve the odds of survival by 24%
(O'Keeffe et al., 2010). It has also been shown that there is a sharp
decline in survival during the first 5 min after a cardiac arrest (De Maio,
Stiell, Wells, Spaite, & Ontario Prehospital Advanced Life Support Study
Group, 2003). The majority of people who suffer a cardiac arrest have
no history of cardiac problems, making prevention difficult. Therefore,
many efforts have been made to improve pre-hospital care by reducing
response times and improving access to AEDs (Caffrey et al., 2002;
Cummins et al., 1991; Pell, Sirel, Marsden, Ford, & Cobbe, 2001; Tsai,
KobHuangc, & Wen, 2012).

A prototype medical drone was announced in 2014
(Communication, 2014). Equipped with an on-board AED and having
speeds up to 100 km/h, this drone has the capability to significantly
reduce the time it takes for an AED to arrive to a patient's side. The
detailed drone deployment procedure is given in Appendix. Since
drones are not bound by road networks and have similar speeds to
traditional ground transport EMS vehicles, they have the potential to
drastically reduce equipment travel time for time critical emergencies
such as sudden cardiac arrest.
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Drones are battery-operated and have limited service range. In order
to minimize response times, a network of medical drones is required to
adequately provide service to a large area. This network must be lo-
cated in such a way to minimize travel delays, minimize cost, and
maximize service coverage. Pulver, Wei, and Mann (2016) investigated
locating a network of medical drones using the maximal covering lo-
cation problem (MCLP), which is a well-established spatial optimization
model for siting emergency service facilities (Brotcorne, Laporte, &
Semet, 2003; Church & ReVelle, 1974; Eaton, Daskin, Simmons,
Bulloch, & Jansma, 1985). However, there are three major limitations
raised in that study. First, the backup service provision for medical
emergencies was not considered, despite the fact that planning for
backup service is essential for the design of an emergency service
system in order to ensure public safety in the case where the closest
facility is unavailable to provide services (Hogan & Revelle, 1986; Jia,
Ordóñez, & Dessouky, 2007; Pirkul & Schilling, 1988). Second, the
continuously distributed demand that requires emergency medical
services was abstracted as discrete demand points (e.g., the centroids of
block groups). Such oversimplification of spatial representation could
introduce significant errors and bias into the service coverage assess-
ment and the final identified locations for medical drones (Miller, 1996;
Murray, Tong, & Kim, 2010; Wei & Murray, 2015). Finally, the study
relied on estimated incidence rates rather than empirical medical data
to assess the demand for medical drones. In an effort to address these
issues, we developed a new spatial optimization model that explicitly
takes into account backup service provision and mitigates representa-
tion errors to locate a network of medical drones in the greater Salt
Lake City area using empirical OOHCA incidence rates.

2. Background

In emergency planning, it is often necessary for EMS personnel to be
able to reach a certain percentage of people or homes within a set
distance or time threshold. For example, the National Fire Protection
Association (NFPA) established a guideline of 9 min between EMS no-
tification and EMS arrival at the patient's side for 90% of distress calls
in urban areas (NFPA, 2010). These constraints are the basis for cov-
erage location models. In general, coverage location models have three
main parts: the demand, the facilities that provide the service, and the
demand-service constraints. In emergency planning, demand may be
the total population per area unit, the number of historic emergency
calls per area unit, or other related measures. The facilities represent
the locations that provide some level of service to the demand. For
example, these may be fire stations, hospitals, or in our case drone
launch sites. Finally, the service constraints connect the facilities to the
demand units by imposing restrictions on the minimum amount of
demand that must be appropriately served by a configuration of facil-
ities within a pre-specified distance or time threshold. For example, the
total percentage of population that can be reached by an ambulance
within 5 min must be at least 80%. Coverage models have been ex-
tensively used to address emergency service planning issues and ex-
amples can be found in Eaton et al. (1985), Erkut, Ingolfsson, and
Erdoğan (2008), Foo, Ahghari, and MacDonald (2010), Yin and Mu
(2012), Murray (2013), Pulver et al. (2016) and Røislien, van den Berg,
Lindner, Zakariassen, Aardal, and Theresia van Essen (2017).

Pulver et al. (2016) investigated the use of MCLP to site a network
of medical drones. The MCLP, developed by Church and ReVelle (1974)
is a widely used location model to site emergency medical services. The
intent of this model is to maximize the service coverage given limited
resources (Church & ReVelle 1974; Church & Murray, 2009). Although
the MCLP is widely used, it relies upon several major assumptions. The
first assumption is that only one type of facility can be used. Often times
it may be more cost effective to renovate existing infrastructure than to
build new facilities. To address this issue, Schilling, Revelle, Cohon, and
Jack Elzinga (1980) presented an extension of MCLP known as the
capital improvement model which considers siting multiple types of

facilities that have different costs.
A second major assumption of the MCLP is that it relies on binary

coverage, meaning that a demand unit is either completely covered or it
is not covered at all. This is not an issue when point data are used for
analysis, however often times, such as in this study, demand is re-
presented as polygons where partial coverage of the polygons are
possible. Many previous studies have demonstrated that significant
errors in assessing service coverage and identifying optimal facility
location configuration can result if partial coverage is ignored
(Cromley, Lin, & Merwin, 2012; Tong, 2012; Wei & Murray, 2015). A
few MCLP extensions, including the MCLP-explicit proposed by Tong
and Murray (2009) and Murray et al. (2010), the MCLP-implicit de-
veloped by Alexandris and Giannikos (2010) and Murray et al. (2010),
and the MCLP-complementary coverage (MCLP-CC) proposed by Tong
(2012), have been developed to take into account partial coverage.
Among these models, the MCLP-CC is considered to be the most pro-
mising modelling approach because of its capability of identifying fa-
cility configuration that achieves largest coverage with reasonable
computational efforts (Wei, 2016).

Third, the MCLP does not explicitly consider backup coverage which
is important in EMS facility allocation, where a facility may be busy and
unable to respond to a second event in its service area (Daskin & Stern,
1981). In order to account for backup coverage, Hogan and Revelle
(1986) developed a multi-objective optimization model, which is an
extension of the MCLP and known as the backup coverage location pro-
blem (BCLP) to maximize both primary and secondary service coverage.
Several other extensions of the BCLP are also discussed in detail in
Hogan and Revelle (1986). Although these models account for backup
coverage, they do not work well with continuously distributed demand,
such as population. It has been shown that actual primary and sec-
ondary coverage could be overestimated or underestimated based on
the binary nature of the BCLP (Kim & Murray, 2008). Given this, Kim
and Murray (2008) developed the BCLP-Actual Area (BCLP-AA) model,
also referred to as the BCLP-Explicit by Murray et al. (2010), to deal
with continuously distributed demand. However, the resulting number
of constraints and variables in the BCLP-Explicit is usually very large
and beyond the computational capability of existing optimization
packages (Kim & Murray, 2008). Such high computational require-
ments prohibit its application to realistic planning problems.

As described earlier, it is essential to integrate backup coverage and
continuously distributed demand into the location decision making of
medical drones. Given these issues associated with existing coverage
models, there is a need to develop a new spatial optimization approach
that explicitly takes into account backup service provision and con-
tinuously distributed demand to locate a network of medical drones.

3. Methodology

We propose a new multi-objective model, the Backup Coverage
Location Problem with Complementary Coverage (BCLP-CC), to identify
the optimal locations for a network of medical drone launch sites. The
BCLP-CC is an extension of both the BCLP and MCLP with some con-
straints similar to the MCLP-CC. This model accounts for partial cov-
erage of continuously distributed demand as well as backup coverage.
Before continuing on, it is necessary to consider the following notation:

j = index of potential drone launch sites where j = 1,2,…m
i = index of demand units where i = 1,2,…n
di = amount of demand in unit i
p = number of drones (or launch sites) to locate
h = maximum backup coverage level
bij = the amount of service provided to demand i by the drone
launched at j
t = the maximum response time used to determine service areas
Ni = the set of drone launch sites that provide some service to de-
mand i within t
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