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a b s t r a c t

Population data are traditionally obtained through censuses and aggregated up to the level of admin-
istrative units for reasons of privacy. This way, however, detailed information on the spatial distribution
of the population within these units is masked. Dasymetric mapping techniques were developed to
disaggregate population to a finer spatial level using ancillary data. However, a frequently recurring
problem in dasymetric mapping studies relates to the overestimation of low-population-density areas
and the underestimation of high-population-density areas. To tackle this issue, this research proposes a
novel dasymetric mapping approach explicitly dealing with spatial non-stationarity. For this purpose, a
comparative model building framework was set up. The impact of spatial non-stationarity on model
performance was investigated by comparing global (OLS), regional (rule-based) and local (geographically
weighted) regression. Also, the impact of model complexity was considered through stepwise inclusion
of information on address type and location, household size and demographic and residential charac-
teristics in the dasymetric model. The approach was tested in the highly complex environment of the
FlanderseBrussels region. It was found that the regional model that incorporates address type and
household size information performs best and overcomes the structural over- and underestimation issue
in dasymetric mapping.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Information on the spatial distribution of population forms an
important input for a wide range of analyses on resource man-
agement, facility allocation, land-use planning, natural hazard and
environmental risk, infection control, disaster relief/mitigation,
quality of life assessment and societyeenvironment interactions
(Dong, Ramesh, & Nepali, 2010; Li & Weng, 2005; Liao, Wang,
Meng, & Li, 2010; Qiu, Sridharan, & Chun, 2010; Upegui & Viel,
2012). Population data are traditionally obtained through cen-
suses and afterwards aggregated up to the level of administrative
units for reasons of privacy. This way, detailed information on the
spatial distribution of the population is masked, creating the un-
realistic impression that population is distributed homogeneously
throughout each administrative unit (Mennis, 2003; Wu &Murray,
2005). Also, results of spatial data analysis may be severely affected
by data aggregation (referred to as the modifiable areal unit

problem (MAUP) by Openshaw (1983)).
Given the limitations of aggregated census data, researchers

have widely adopted the principles of dasymetric mapping to
obtain population estimates at finer spatial scales. In dasymetric
mapping (Wright, 1936), ancillary information that provides clues
to the actual population distribution is used to subdivide a source
zone for which the population is known into target zones, after
which that population is disaggregated to these finer spatial units.
In the literature, a distinction can be made between ‘lower-reso-
lution’ (generalised information on the physical and functional
characteristics of the built environment) and ‘higher-resolution’
ancillary data (detailed, local information on street networks,
buildings and addresses) for use in dasymetric mapping. The most
widely used type of lower-resolution ancillary data is land-use in-
formation. In the literature, many approaches have been proposed
to estimate representative population densities per land-use cate-
gory from available land use and population data and to use that
information for disaggregating population to finer spatial units (e.g.
Briggs, Gulliver, Fecht, & Vienneau, 2007; Eicher & Brewer, 2001;
Holloway, Schumacher & Redmond, 1999; Langford, 2007;* Corresponding author.
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Langford, Magnire, & Unwin, 1991; Langford & Unwin, 1994; Li &
Corcoran, 2011; Mennis, 2003; Mennis & Hultgren, 2006; Yuan,
Smith, & Limp, 1997). Other types of lower-resolution ancillary
data like spectral and/or textural metrics obtained from remotely
sensed data (Harvey, 2002; Li & Weng, 2005; Liu, Clarke, & Herold,
2006) or demographic information and distance-to-services met-
rics (Deng, Wu, & Wang, 2010) have also been applied, but the
results obtained in these studies suffered from low accuracies.
Impervious surface fractions, on the other hand, have proven to
perform equally well as or even better than land-use data as a
source for disaggregating population data (Lu, Weng, & Li, 2006;
Wu & Murray, 2007; Zandbergen & Ignizio, 2010). Recently,
nonparametric modelling has been applied to disaggregate popu-
lation based on a large number of remotely sensed and other
geospatial variables (Patel et al., 2015; Stevens, Gaughan, Linard, &
Tatem, 2015).

While many of the studies above relied on ancillary infor-
mation obtained from remotely sensed data, the resolution of the
imagery used was often too low to obtain accurate disaggrega-
tion results, especially in heterogeneous urban environments.
With the advent of high-resolution remote sensing, image reso-
lution has become less of a constraint in dasymetric mapping
(see e.g. Ural, Hussain, & Shan, 2011). Nevertheless, given the
high cost, limited coverage and narrow time range of this data
source, other high-resolution data types have also proven inter-
esting. Local infrastructure information recently has become a
popular ancillary data source for disaggregating population to a
finer spatial level, including street length or street density (Reibel
& Bufalino, 2005; Su, Lin, Hsieh, Tsai, & Lin, 2010), ‘points of
interest’ correlated with high population densities (Bakillah,
Liang, Mobashen, Arsanjani, & Zipf, 2014) or building area or
volume extracted from (a) LIDAR (Dong et al., 2010; Sridharan &
Qiu, 2013; Upegui & Viel, 2012), (b) high-resolution satellite or
aerial imagery (Lung, Lübker, Ngochoch, Schaab et al., 2013; Ural
et al., 2011) or (c) parcel data (Jia, Qiu, & Gaughan, 2014;
Maantay, Maroko, & Herrmann, 2007; Xie, 2006). To obtain ac-
curate disaggregation results from building data, a distinction is
best made between residential and non-residential buildings,
and preferably between different residential types (houses and
apartments) as well (Jia et al., 2014; Ural et al., 2011). Address
data have also been used for dasymetric mapping purposes, e.g.
in a study by Tapp (2010), who multiplied the number of ad-
dresses in the target zone's residential parcels by the average
household size in the source zone. Zandbergen (2011) compared
using residential address points with dasymetric mapping tech-
niques based on land use, impervious surface cover, light emis-
sion and road density. Both Tapp (2010) and Zandbergen (2011)
concluded that methods using address points outperform more
traditional dasymetric mapping techniques.

Despite the aspiration to arrive at a finer approximation of the
actual spatial distribution of the population through ancillary
data with ever-increasing detail, a frequently recurring problem
in dasymetric mapping remains the overestimation of low-
population-density areas and the underestimation of high-
population-density areas (Eicher & Brewer, 2001; Gallego,
2010; Gaughan, Stevens, Linard, Patel, & Tatem, 2014; Harvey,
2002; Li & Corcoran, 2011; Li & Weng, 2005; Lu et al., 2006;
Mennis & Hultgren, 2006; Su et al., 2010; Upegui & Viel, 2012;
Ural et al., 2011; Yang, Yue, & Gao, 2013). This can be attrib-
uted to a lack of accounting (sufficiently) for spatial non-
stationarity: the derivation of global parameters (be they inter-
polation weights or regression coefficients) imposes an averaging
effect on the disaggregation that masks intrinsic variation in
population distribution characteristics, which manifests itself
particularly at the population density extremes. This is especially

true in medium-scale to small-scale studies covering locations
along the rural-urban continuum, which are characterised by a
high range of population densities. Rural, low-density areas tend
to have a more variable population distribution than medium-to-
high-density areas with urban or suburban development, which
may be relatively homogeneous (Zandbergen, 2011). Therefore,
in research focussing on large-scale, metropolitan or intra-urban
areas, the impact of using globally defined parameters may be
less pronounced (see Murakami & Tsutsumi, 2011; Qiu et al.,
2010; Wu & Murray, 2005, 2007).

Few strategies have been proposed to address spatial non-
stationarity in the population estimation field. One suggestion
involves dividing the study area into subregions and performing
a separate population redistribution within each subregion, as
has been done in Li and Corcoran (2011), Mennis (2003) and
Yuan et al. (1997). However, these studies neglect the rather
arbitrary nature of administrative boundaries, which are unlikely
to delineate areas with homogeneous population distribution
characteristics. Therefore, local regression approaches that esti-
mate separate coefficients for each population record have been
tested through (i) quantile regression (Cromley, Hanink, &
Bentley, 2012) and (ii) geographically weighted regression
(Dong et al., 2010; Lin, Cromley, & Zhang, 2011; Lo, 2008). While
the application of these techniques showed an improvement
upon the global regression approach, it still did not seem to solve
the classic problem at the population distribution's extremes
though.

In this research, a dasymetric mapping approach is proposed
that explicitly deals with spatial non-stationarity for accurately
predicting fine-grained population in spatially complex, strongly
heterogeneous areas. The strategy for dasymetric mapping pre-
sented builds on three key features: 1) functional differentiation
based on land-use information, 2) population model calibration at
the source zone level and 3) volume-preserving disaggregation of
the population up to the level of individual address points. To
develop our approach, a comparative model building framework
was set up accounting for increasing model complexity and spatial
non-stationarity.

2. Study area

The approach proposed in this paper was tested on the Flanders
region and the Brussels Capital Region, which cover the northern
part of Belgium and together form one of Europe's most densely
populated areas, with on average 550 inhabitants per km2 (based
on FOD Economie, 2014) (Fig. 1). Characteristic of this area is the
complex urban pattern consisting of a few big and several regional
cities and smaller settlements that are all connected through a
dense road network, along which vast elongated areas of so-called
“ribbon-building” occur as a result of strong suburbanisation dur-
ing the last decades (Meeus & Gulinck, 2008). Consequently,
morphological and functional urban relationships are defined by
expanded city regions consisting of (a) an urban agglomeration,
which comprises the continuous fabric of the core city and the
urban fringe, and (b) suburban zones with a rural morphology, but
urban functionality (Van Hecke, Halleux, Decroly, & M�erenne-
Schoumaker, 2009). The FlanderseBrussels area includes twelve
city regions, in which high population densities occur within the
core city and e to a greater (Brussels, Antwerp, Ghent) or lesser
extent (most of the regional towns) e within the urban fringe; the
suburban zones generally show a mix of low and medium popu-
lation densities (Fig. 1).

To perform meaningful studies in highly sprawled regions like
Flanders and Brussels, the need for detailed, high-resolution data
has been repeatedly emphasized (Meeus & Gulinck, 2008).
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