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Using the theory of dynamical systems, this study investigated the effects of a uniform internal heat generation
on chaotic behaviour in thermal convection in afluid-saturated porous layer subject to gravity and heated from
below for low Prandtl number. A low-dimensional, Lorenz-like model was obtained using Galerkin truncated
approximation. The fourth-order Runge–Kuttamethodwas employed to solve the nonlinear system.We found
that there is an inverse proportional relation between the level of internal heat G and the scaled Rayleigh
number R, and consequently the porous media gravity-related Rayleigh number Ra.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Chaotic behaviour in a fluid-saturated porous medium has
attracted interest due to its wide application in such fields as
geothermal energy utilization, oil reservoir modeling, catalytic packed
beds filtration, thermal insulation and nuclear waste disposal [1].

Vadasz and Olek [2] found that the transition from steady
convection to chaos is sudden and occurs by a subcritical Hopf
bifurcation producing a solitary limit cycle which may be associated
with a homoclinic explosion when the Prandtl number is low. This
finding can be recovered from a truncated Galerkin expansion [3] that
yields a system identical to the familiar Lorenz equations [4,5]. The
work of Vadasz [6] suggests an explanation for the appearance of this
solitary limit cycle via local analytical results. A similar approach was
used byVadasz [7] to demonstrate similar results for the corresponding
convection problem in a pure fluid. Vadasz and Olek [8] showed that,
when the Prandtl number is moderate, the route to chaos occurs by a
period doubling sequence of bifurcations.

An understanding of the effects of internal heat generation, on the
other hand, is important in several applications that include reactor
safety analysis, metal waste, spent nuclear fuel, fire and combustion
studies and strength of radioactive materials [9].

Islam [10] investigated natural convection in both horizontal and
inclined porous channels with uniform internal heat generation. He
observed chaotic behaviour with increasing Rayleigh number. Fluid
flow and heat transfer in a porous medium over a stretching surface
with internal heat generation was investigated by Rafael [11], who
observed that with increasing Prandtl number the temperature
decreases. Mealey and Merkin [12] considered steady convective

flow within a square region filled with a fluid-saturated porous
medium having internal heat generation at a rate proportional to the
power of the temperature difference. They found that the flow and
heat transfer depended on the Rayleigh number and a heat generation
parameter, as well as the local-heating exponent.

In this study, the work of Vadasz and Olek [2] on the transition to
chaos is extended to include consideration of the influence of a
uniform internal heat generation. The transition from steady
convection to chaos was analyzed using the fourth-order Runge–
Kutta method. On the grounds that it is important to understand low-
dimensional dynamics before moving to more complex systems,
truncated Galerkin approximation was applied to the governing
equations for thermal convection in a fluid-saturated porous layer
subject to gravity and heated from below for a low Prandtl number,
allowing us to deduce an autonomous system with three ordinary
differential equations. This system was used to investigate the
dynamic behaviour of thermal convection in a porous medium and
to elucidate the effects of internal heat generation on the transition to
chaos.

2. Problem formulation

Consider a fluid-saturated porous layer subject to gravity and
heated from belowwith local heat generation. A Cartesian co-ordinate
system is used such that the vertical axis z is collinear with gravity, i.e.
êg=êz.

The dimensionless governing equations can be written as

∇⋅
→q = 0; ð1Þ

1
Va

∂
∂t + 1

� �
→q = −∇p + RaTêz; ð2Þ
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∂T
∂t + →q ⋅∇T = ∇2T + GT; ð3Þ

where →q is the velocity, T is temperature, p is pressure, Ra is the
gravity-related Rayleigh number defined in the form Ra=β

*
ΔTcg*H*

k
*
Mf/αe*ν*

, Va is the Vadasz number defined by Va=ϕPr/Da, and G is a
measure of internal heat generation. The time derivative term was

included in Darcy's Eq. (2). The values αe⁎/H*
Mf, μ*αe*/k*Mf, and ΔTc=

(TH−TC) were used to scale the filtration velocity components (u
*
, v

*
,

w
*
), pressure (p

*
), and temperature variations (T

*
−TC), respectively,

where αe
⁎ is the effective thermal diffusivity, μ

*
is fluid viscosity, k

*
is

the permeability of the porous matrix, andMf is the ratio between the
heat capacity of the fluid and the effective heat capacity of the porous
domain. The height of the layerH

*
was used for scaling the variables x

*
,

y
*
, z

*
andH

*
2/αe

⁎ for scaling the time t
*
. Accordingly, x=x

*
/H

*
, y=y

*
/H

*
,

z=z
*
/H

*
and t=t

*
αe⁎/H*

2.
As all the boundaries are rigid, the solution must follow the

impermeability conditions on the boundaries, that is, →q ⋅ên = 0,
where ên is a unit vector normal to the boundary. The temperature
boundary conditions are T(0)=1, T(1)=0 and ∇T⋅ên=0 on the
other two vertical walls, representing the insulation condition on
these walls.

The governing equations can be presented in terms of a stream
function defined by u=∂ψ/∂z andw=−∂ψ/∂x, as for convective rolls
having axes parallel to the shorter dimension (i.e. y) when v=0.
Applying the curl (∇×) operator on Eq. (2) yields the following
system of partial differential equations from Eqs. (1)–(3):

1
Va

∂
∂t + 1

� � ∂2ψ
∂x2

+
∂2ψ
∂z2

" #
= −Ra

∂T
∂x ; ð4Þ

∂T
∂t +

∂ψ
∂z

∂T
∂x−

∂ψ
∂x

∂T
∂z =

∂2T
∂x2

+
∂2T
∂z2

+ GT; ð5Þ

where the boundary conditions for the stream function are ψ=0 on
all solid boundaries. The set of partial differential Eqs. (4) and (5),
form a nonlinear coupled system and togetherwith the corresponding
boundary conditions will accept a basic motionless conduction
solution.

3. Reduced set of equations and analysis

In order to obtain the solution to the nonlinear coupled system of
partial differential equations in Eqs. (4) and (5), we represent the
stream function and temperature in the form

ψ = A11 sin
πx
L

� �
sin πzð Þ; ð6Þ

T = cos
ffiffiffiffi
G

p
z

� �
− cot

ffiffiffiffi
G

p� �
sin

ffiffiffiffi
G

p
z

� �
+ B11 cos

πx
L

� �
sin πzð Þ

+ B02 sin 2πzð Þ:

ð7Þ

This representation is equivalent to a Galerkin expansion of the
solution in both the x- and z-directions, truncated when i+ j=2,
where i is the Galerkin summation index in the x-direction and j is the
Galerkin summation index in the z-direction. Substituting Eqs. (6) and
(7) into Eqs. (4) and (5), multiplying the equations by the orthogonal
eigenfunctions corresponding to Eqs. (6) and (7) and integrating
them over the domain, that is, ∫0

Ldx∫0
1dz(⋅), yields a set of three

ordinary differential equations for the time evolution of the
amplitudes:

∂A11

∂τ = −Vaγ
π2 A11 +

Ra
πθ

B11

� �
; ð8Þ

∂B11

∂τ =
γG
π2 −1

� �
B11 +

4π
θ G−4π2	 
A11−

1
θ
A11B02; ð9Þ

∂B02

∂τ = −4γ +
γG
π2

� �
B02 +

1
2θ

A11B11; ð10Þ

Nomenclature

Da Darcy number, defined by k
*
/L

*
2

êx, êy, êz unit vectors in the x, y and z-directions
êg unit vector in the direction of gravity
ên unit vector normal to the boundary, positive outwards
G a measure of the internal heat generation
H
*

the height of the layer
H the front aspect ratio of the porous layer, equals H

*
/L

*
k
*

permeability of the porous domain
L
*

the length of the porous layer
L reciprocal of the front aspect ratio, equals 1/H=L

*
/H

*
Mf a ratio between the heat capacity of the fluid and the

effective heat capacity of the porous domain
p reduced pressure (dimensionless)
Pr Prandtl number, equals ν

*
/αe

*

q dimensionless filtration velocity vector, equals uêx+
vêy+wêz

Ra porous media gravity-related Rayleigh number, equals
β
*
ΔTcg*H*

k
*
Mf/αe

*ν
*

R scaled Rayleigh number, equals Ra/4π2

R ̂ (4γ)R/(4γ−b)
t time
T dimensionless temperature, equals (T

*
−TC)/(TH−TC)

TC coldest wall temperature
TH hottest wall temperature
u horizontal x component of the filtration velocity
v horizontal y component of the filtration velocity
Va Vadasz number, equals ϕPr/Da
w vertical component of the filtration velocity
x, y, z Cartesian co-ordinates
X rescaled amplitude A11

Y rescaled amplitude B11
Z rescaled amplitude B02

Greek symbols
α a parameter related to the time derivative term in

Darcy's equation
αe
* effective thermal diffusivity

β
*

thermal expansion coefficient
γ L/θ=L2/(L2+1)
ϕ porosity
ν
*

fluid's kinematic viscosity
μ
*

fluid's dynamic viscosity
Ψ stream function
ΔTc characteristic temperature difference
τ rescaled time, equals(L2+1)π2t/L2

θ (L2+1)/L

Subscripts
* dimensional values
c characteristic state
cr critical values
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