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a b s t r a c t

Probabilistic spaceetime prisms are a recent development in time geography. They can be used to
determine the probability of an object's location at any time given tracking data that record information
about its whereabouts periodically. This paper extends this approach in order to quantify probabilities of
interaction for two or more individuals that have tracking data for overlapping time periods. The method
relies on using a voxel-based representation of the probabilistic spaceetime prism. Equations for
computing interaction probabilities from the intersection of overlapping spaceetime prisms are
formulated for single voxels, each time step, each raster cell, and for the tracking duration overall. The
approach is illustrated using tracking data for three zebras. Probabilistic spaceetime prisms are mapped
simultaneously for all three zebras, and the resulting interactions are summarized using probability
clocks and maps. The results show when and where each pair of zebras, or all three zebras, were most
likely to have physically interacted with one another. Implications of this research in GIScience, ecology,
and other disciplines are also discussed.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Quantifying interactions between mobile objects, such as ani-
mals or people, is a common task in GIScience, ecology, and a va-
riety of related disciplines. In terms of animals, both intraspecies
(among individuals of the same species) and interspecies (between
individuals of different species) interactions are of interest (Lowrey
& Longshore, 2013; Potts, Harris, & Giuggioli, 2013; Shemesh et al.,
2013). Animal interactions are important for understanding the life
history requirements of species, which are important to conserva-
tion efforts, as well as for explaining community dynamics and the
evolutionary history of species (Bode et al., 2012; Eriksson, Nilsson
Jacobi, Nystr€om,& Tunstrøm, 2010; Giuggioli, Potts,& Harris, 2011;
Pettit, Perna, Biro, & Sumpter, 2013). Interactions are also well
studied for people, as they are essential to understanding human
behaviour, social networking, and accessibility patterns (Miller,
2005b). From a purely spatial perspective, interactions also pre-
sent an interesting analytical problem, because two individuals

must be located at the same place at the same time to physically
interact.

There are numerous approaches to quantifying co-location and
evaluating potential for physical interactions among individuals
using tracking data. In ecology, two main approaches are used:
home range overlap and frequency of co-location. Home ranges
describe the physical area occupied by an individual animal and are
typically estimated from tracking data using GIS-based techniques
(Downs & Horner, 2008, 2009; Downs, Horner, & Tucker, 2011;
Kernohan, Gitzen, & Millspaugh, 2001; Worton, 1987). Home
range overlap measures the amount or percentage of space shared
by two individuals (Olsen, Downs, Tucker, & Trost, 2011). As this
measure does not factor in any temporal information, it only gives a
measure of potential interaction because two animals can use the
same places but at different times. However, if two animals are
tracked simultaneously with the same temporal sampling scheme,
then a more useful approach is to quantify how often they are
located at the same place at the same time. Additionally, this fre-
quency of co-location can be compared to the number expected
under a correlated random walk model to determine if interaction
occursmore often than expected by chance (Miller, 2012). Themain
limitation of this approach is that interactions are only evaluated if
tracking points for individuals are collected at identical times, as
interactions are not estimated at unsampled intervals.
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In GIScience, time geography serves as the cornerstone
approach for quantifying potential interactions of objects, particu-
larly people. Specifically, spaceetime prisms map the potential lo-
cations of an object over space and time within a “net” of spatial,
temporal, and physical constraints that limit its movements
(H€agerstrand, 1970; Miller, 2005a). Spaceetime prisms have been
instrumental for analyzing movements of people and have
contributed numerous insights into understanding human behav-
iour and interaction (Horner & Wood, 2014; Kwan, 1998, 1999;
Miller, 1991, 2005b; Neutens, Witlox, De Weghe, & De Maeyer,
2007; Shaw, Yu, & Bombom, 2008). Even with the demonstrated
applicability of spaceetime prisms, recent advancements have
transformed time geography into an even more powerful meth-
odological approach by enabling probabilities to be assigned to
those potential locations within the prism. Probabilistic space-
etime prisms estimate the probability of an object's location in
continuous time given tracking data that record information about
its whereabouts at periodic, discrete times. The concept of a
probabilistic spaceetime prism was introduced by Winter and Yin
(2010a, 2010b), while Downs, Horner, Hyzer, Lamb, and Loraamm
(2013) developed a voxel-based approach for its geocomputation.
This paper extends the voxel-based approach to support the
computation of interaction probabilities for two or more in-
dividuals that have tracking data for overlapping time periods but
not necessarily the same temporal sampling scheme.

First, a procedure for computing voxel-based spaceetime
prisms is reviewed, since the approach described in this paper re-
lies on this representation. Second, equations for computing
interaction probabilities from intersected probabilistic spaceetime
prisms are presented. Third, the approach is demonstrated using
tracking data for three individual zebras tracked over a 60-h period
in the same study area. Then, the resulting probabilistic spaceetime
prisms for all three zebras are intersected to compute interaction
probabilities for single voxels, each time step, each raster cell, and
for the tracking duration overall. Finally, implications of this
research in GIScience, ecology, and related disciplines are also
discussed.

Background

Time geography is a cornerstone approach for analyzing mobile
objects in GIScience. Basic elements of time geography include
control points, the spaceetime path, and the spaceetime prism
(Miller, 2005a; Miller & Bridwell, 2009). Control points, or tracking
data, record an object's location periodically over time. The
spaceetime path traces the estimated trajectory of an object
through space and time by connecting successive control points
with straight lines. The spaceetime prism maps the potential
movements of an object about the spaceetime path given its
maximum velocity. The prism is composed of an infinite number of
spaceetime disks which delineate the set of possible locations for
an object at each time instance. The relative size of the disks reflects
the uncertainty of the object's location. Recent advancements in
time geography enable the computation of probabilistic space-
etime prisms which record locational probabilities within each
spaceetime disk. This allows the probability of an object's location
to be quantified at any instant in time. Winter and Yin (2010a,
2010b) first introduced probabilistic spaceetime prisms. Recent
work by Song and Miller (2013) has provided an additional theo-
retical basis for probabilistic spaceetime prisms, while Downs et al.
(2013) provided the voxel-based geocomputational procedure that
is used in this paper.

A voxel-based representation of spaceetime prisms facilitates
their geocomputation. In GIScience, voxels, or cubic volume ele-
ments, are commonly used to model three-dimensional data, such

as terrain. Spaceetime prisms can be generalized using voxels in
three-dimensional spaceetime. Here, each individual voxel repre-
sents a spatial area (i.e. a raster cell) at a specific time interval. Once
voxels in a study area are defined based on the desired spatial and
temporal resolution, a spaceetime prism is computed by deter-
mining which spatial locations are accessible to the object at each
time given a set of control points and its maximum velocity.
Traditional time geography equations are used to compute the
prism, with the exception that all calculations are performed at the
voxel centroids, with the resulting values generalized to the rest of
the voxel. The voxel centroids correspond to the geometric centres
of each raster cell and the midpoint of each temporal interval. In
practice, each voxel is encodedwith a 1 or 0 to indicatewhether it is
contained in the prism or not, and the prism is geovisualized using
the voxel centroids. Mathematically, a spaceetime prism (STP) can
be formulated for each voxel, denoted lba (Fig. 1), using the
following equation, as per Downs et al. (2013):

STPlb;a ¼
�
1; if kxa � xik � ðtb � tiÞv and

��xj � xa
�� � �

tj � tb
�
v

0; otherwise
;

(1)

where:

C ¼ fc1ðt1; x1Þ;…; ciðti; xiÞ; cjðtj; xjÞ;…; cnðtn; xnÞg denotes the set
of n tracking data points, where each control point c is indexed
as i with timestamp ti and spatial location xi. Control points
immediately following ci are denoted cj with timestamp tj and
location xj.
R ¼ fr1ðx1Þ;…; raðxaÞ;…; rmðxmÞg denotes the set of m raster
cells r in the study region, where each raster cell indexed as a,
where raster cell ra has spatial location xa recorded from its
centroid.
K ¼ fk1ðt1Þ;…; kbðtbÞ;…; kqðtqÞg denotes the set of q time in-
tervals k indexed as b, where timestamp tb is recorded at the
midpoint of the time interval kb. In other words, k defines the
height of the voxel in units of time; the time (tb) recorded for
each voxel is derived from the midpoint of that interval.
L ¼ fl11ðk1; r1Þ;…; lbaðkb; raÞ;…; lqmðkq; rmÞg is the set of voxels l
that contains the spaceetime prism indexed as ba, where voxel
lba corresponds to raster cell ra at time interval tb. Lk is used to
denote the subset of voxels for a particular time interval, or
spaceetime disk. Lr is used to denote the subset of voxels for a
spatial location or raster cell.

Fig. 1. Notation of raster cells (r) and time steps (k) in a spaceetime prism composed of
voxels (l) arranged in space (x, y) and time (t).
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