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a b s t r a c t

The Liangshui National Nature Reserve, located in Northeast China, was heavily damaged by severe
windstorms in 2008 and 2009, which caused abundant windthrows, especially large trees, and signifi-
cantly altered the size and structure of the natural forest. A forest survey was conducted to collect data
on living trees, downwood on the forest floor, and environmental factors. We were interested in
modeling three types of response variables, including the occurrence of downwood (binary), the number
of downwood trees (count) and the volume of downwood (continuous). These response variables were
regressed to a set of stand and topographic predictors, including the average diameter of living trees,
total volume of living trees, elevation, and slope. Both global and local (geographically weighted
regression) modeling techniques were utilized to fit the models.

Our results show that local models have great advantages over corresponding global models in model
fitting and performance, with desirable model residuals. The spatial variations of local model coefficients
were visualized in contour maps, which provided detailed information on the relationships between
downwood and stand and topographic variables in the local areas. Furthermore, these local models can
be readily incorporated into GIS software and combined with statistical graphics and the mapping ability
of GIS technology, to become excellent tools for assessing the risk of natural disasters or disturbances for
a given local area, predicting damage caused by such disasters, and offering information critical to
decision-making and management planning to prevent or reduce the impacts of natural disasters in the
future.

� 2012 Elsevier Ltd. All rights reserved.

Introduction

The northeast forests of China include Da Xing’an Mountain,
Xiao Xing’an Mountain and Changbai Mountain. This region plays
an important role in both wood productivity and ecological
sustainability for all of China. It has 50.5 million hectares of
forestlands, covering 28.9% of the country’s total forested areas
(Yu et al., 2011) and 3468 million m3 of timber stock, equal to 27.8%
of the national total (State Forestry Administration (SFA), 2005).
The northeast forests are comprised of cold-temperate conifer
stands, and temperate mixed coniferebroad leaf stands, and
contains the largest natural forest in China (Yan, Zhao, & Yu, 2000;
Yu et al., 2011).

A natural forest is a plant and tree community that originated
from the original forest cover or spontaneous generation
(Naturstyrelsen, 1994). It is usually more influenced by natural
disturbances (e.g., wildfire, wind, insect, etc.) than human distur-
bances (e.g., logging or regeneration). Within the ecosystem of
a natural forest, downwood is a significant component of the forest
floor, which includes deadwood and windthrows. Deadwood
comprises standing dead trees, snags or fallen material on the forest
floor and woody debris that directly resulted from dead or dying
trees (Pasher & King, 2009).Windthrows are defined as the breakage
or uprooting of trees by winds (Lanquaye-Opoku & Mitchell, 2005).

Deadwood and windthrows play a crucial role in nutrient
cycling, carbon storage, vegetation succession, and maintenance
of biodiversity in the ecosystem of natural forest (Depro, Murray,
Alig, & Shanks, 2008; Jonasova, Vavrova, & Cudlin, 2010; Lang,
Schulte, & Guntenspergen, 2009; Pasher & King, 2009). However,
due to limited accessibility after disturbances (Pleshikov, Ryzkova,
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& Kaplunov, 1998), data on windthrows are difficult to obtain,
making it all the more challenging to study the frequency, magni-
tude, and distribution of wind disturbances, especially in nature
forests (Bouget & Duelli, 2004).

Windthrows have both ecological and economic effects on
natural forests. The ecological effects can be created from forest to
stands, as well as within stand levels (Bouget & Duelli, 2004;
Ulanova, 2000). First, windthrows generate stands with multi-age
and diverse successional series at the forest level, which are more
resistant to natural disturbances in the future (Jonasova et al.,
2010). Second, windthrows increase above- and below-ground
environmental heterogeneity at the stand level, including habitat
micro-climates, micro-topographic heterogeneity, and soil and
vegetation structure. Third, windthrows create within-gap envi-
ronmental heterogeneity (Bouget & Duelli, 2004), which results in
different sun exposure, humidity, local air flow patterns and
increased daily fluctuations in temperature (Zabowski, Java,
Scherer, Everett, & Ottmar, 2000).

Economic influences should not be ignored. For example, the
rapid increase in windthrows poses challenges for timber harvest
and storage, which leads to the instability of wood market (Costa &
Ibanez, 2005; Meilby, Strange, & Thorsen, 2001). Windthrows
clearly have a significant impact on forest profitability and
sustainability (Haight, Smith, & Straka, 1995; Meilby et al., 2001;
Valinger et al., 1993). For example, windthrows resulting from the
1999windstorms in France represented about three years of annual
harvest and reduced carbon balance of 16 million tons (Costa &
Ibanez, 2005; Don et al., 2012; Mickovski, Stokes, & van Beek,
2005). In British Columbia, Canada in1991, the timber damaged
by winds was equivalent to 4% of the annual allowable cut, and also
equal to the damage caused by insects or wildfire that year
(Lanquaye-Opoku & Mitchell, 2005; Mitchell, 1995). Being able to
predict the probability of windthrows occurring and, further, to
estimate the number and volume of windthrows would be of great
value, even with the limited available data.

Over the past decade, much work has gone into developing
different tools for studying windthrows, including observational,
empirical, and mechanistic methods (Mickovski et al., 2005).
Empirical or statistical models present more advantages over
observational and mechanistic models for forest stands with
complex structure and composition (Lanquaye-Opoku & Mitchell,
2005; Mitchell, Hailemariam, & Kulis, 2001). Generalized linear
models (GLM) are widely used for predicting the probability and
count of events. GLMs extend the normality assumption of the
model error in ordinary least squares (OLS) to the exponential
family � including binomial, Poisson, gamma, Gaussian (normal) �
and predicts response variables by a link function of predictors
(Fotheringham, Brunsdon, & Charlton, 2002). Logistic regression is
commonly used to predict the probability of windthrows by envi-
ronmental and forest attributes such as climatic, topographic,
stand, tree, and soil factors (Gibbons, Cunningham, & Lindenmayer,
2008; Klaus, Holsten, Hostert, & Kropp, 2011; Lanquaye-Opoku &
Mitchell, 2005; Valinger & Fridman, 2011).

Gaussian models are preferable for predicting the volume of
downwood, which is a continuous response variable with a normal
or log-normal distribution. Pesonen, Maltamo, Eerikainen, and
Packalen (2008) utilized Gaussian models for downed and
standing deadwood (log-transformed) volume at a plot level, using
predictor variables derived from airborne laser-scanning data.
Chojnacky, Mickler, Meath, andWoodall (2004) developedmultiple
linear regression models to predict downwood by forest structure
and climate variables. Although few models have been developed
for predicting the number of downwood, Poisson regression is the
correct choice for dealing with count response variables. To date,
however, most previous studies use GLMs that are global (Ma,

Zuckerberg, Porter, & Zhang, 2012) with assumption of spatial
stationarity which is difficult to be met in the data collected in
forestry and/or ecological studies.

Recently, researchers have realized that tree growth and stand
development can be greatly influenced by spatial effects (i.e.,
spatial autocorrelation and heterogeneity) of neighboring forest
stands (Anselin & Griffith, 1988; Zhang, Ma, & Guo, 2009). For
example, Fukui (2011) and Meilby et al. (2001) point out that the
risk of windthrows does not depend only on the features of forest
stands, but also on neighboring stands and the spatial structure and
geographical orientation of forest stands. However, the spatial
heterogeneity of forest conditions can be increased by wind
disturbances at different spatial scales (i.e., forest, stand, or within
stand) (Bouget & Duelli, 2004). Consequently, the nature of wind-
throws data may cause violations of the assumptions of indepen-
dent observations and homogenous variance due to the spatial
effects. These may inflate estimates of standard error of the model
coefficients, reduce the efficiency of parameter estimation, and
mislead the significance of hypothesis testing on the model coef-
ficients (Anselin & Griffith, 1988; Fox, Ades, & Bi, 2001; Zhang &
Gove, 2005).

Over the last decade, geographically weighted regression (GWR)
has become popular for efficiently dealing with spatial heteroge-
neity and autocorrelation in model errors (Fotheringham et al.,
2002; Zhang, Gove, & Heath, 2005, 2009). This local modeling
technique has been successfully applied to the relationships
between variables in many study fields, such as forestry, ecology,
and economics (e.g., Ma et al., 2012; Tu, 2011; Wang, Ni, &
Tenhunen, 2005; Zhang, Bi, Cheng, & Davis, 2004). GWR fits
a regression model for each geographic location in the study area
using the neighbors within a specific bandwidth and distance-
related weight function. Therefore, the fitting and performance of
GWR models depend on the selection of bandwidth and weight
function (Guo, Ma, & Zhang, 2008). Although GWR still assumes the
normality and homogeneous variances for the model error term at
each geographical location, it explicitly uses the local information
on spatial heterogeneity and autocorrelation among the neigh-
boring locations by (1) defining an appropriate bandwidth, (2)
utilizing a distanceedecay weight function, and (3) applying
weighted least squares for estimating model parameters. Thus, the
local spatial relationships can be incorporated into the regression
framework in an intuitive and explicit manner, bringing GWR an
obvious advantage over a global model (Fotheringham et al., 2002;
Zhang & Gove, 2005). In addition, GWR modeling results are
mappable and can be readily combined with GIS, which offers
a powerful tool for analyzing, representing, and managing geo-
referenced data (Chang, 2010; Murray & Tong, 2009; Tu, 2011; Tu
& Xia, 2008).

In this study, we attempted to model the relationships between
the occurrence of downwood (binary), the number of downwood
(count) and the volume of downwood (continuous) and a set of
stand variables and topographical factors by using both global and
local (GWR) modeling methods. Our objectives were as follows: (1)
to develop global logistic, Poisson, and Gaussian models to regress
the probability of occurrence, count, and volume of downwood,
respectively, against stand variables and topographical factors; (2)
to develop GWR logistic regression (GWLR), GWR Poisson regres-
sion (GWPR), and GWR Gaussian regression (GWGR) models to
regress the probability of occurrence, count, and volume of
downwood, respectively, against the same set of stand variables
and topographical factors; (3) to compare the global and local
(GWR) models in terms of model fitting and performance; and (4)
to visually represent the distributions of local model coefficients
across the study area and investigate the spatial patterns of the
geographically varying model coefficients.
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