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A B S T R A C T

Maize agriculture is experiencing substantial changes in the spatiotemporal pattern of planting areas in the most
populous country-China. However, there is no spatially explicit and continuous information at national scale.
Mapping maize at national scale is challenging due to intra-class variability of Vegetation Indices (VIs) temporal
profile. This study coped with this challenge through combined utilizations of the EVI with two bands (EVI2) and
Normalized Multi-band Drought Index (NMDI) time series datasets. A novel Maize mapping algorithm was
proposed through Exploring Leaf moisture variation during flowering Stage (MELS). An indicator, the Ratio of
Cumulative Positive slope to Negative slope (RCPN) during flowering stage, was developed based on NMDI and
utilized as the unique metric for maize mapping. The capability of the MELS method was verified using the 8-day
composite MODerate resolution Imaging Spectroradiometer (MODIS) datasets in China from 2005 to 2017. The
derived maize map was consistent with the agricultural census data (r2= 0.8875 in 2015) and 2020 ground
truth observations (overall accuracy=91.49%). Validation with Landsat-interpreted images in the test regions
further confirmed its fairly good accuracy, with overall accuracy of 87.91% and kappa coefficient of 0.8577. We
first generated annual maize maps from 2005 to 2017 in China. Maize planting areas increased continuously
100,130 km2 (by 33.20%) during the period 2005–2015 and decreased 10,424 km2 (by 2.60%) from 2015 to
2017. The increase of cropping intensity, replacement of paddy rice and other non-maize dryland crops areas
accounted for 36.48%, 34.23% and 29.29% of the dramatic increased maize areas from 2005 to 2015, respec-
tively.

1. Introduction

Maize is considered globally as the most important grain for both
human beings and livestock (Ngie et al., 2014; Tan et al., 2014). Up-
dated information on crop area mapping can provide important scien-
tific evidence to estimate agricultural production and plan for food
security (Ngie et al., 2014; Song et al., 2017; Tan et al., 2014; Zhang
et al., 2014). Despite of the increasing availability of global land cover
products, more specific information on crop type is still limited over
large areas (Dong et al., 2015; Song et al., 2017). Considerable mapping
studies have been conducted on primary crops such as paddy rice (Dong
et al., 2016; Xiao et al., 2005), wheat (Pan et al., 2012; Qiu et al.,
2017c; Sun et al., 2012), and maize (Tang et al., 2018; Yu and Shang,
2017; Zhang et al., 2014). Compared with mapping land cover, iden-
tification of agricultural crops is much more challenging due to the high

diversity of agricultural planting structure (Dong and Xiao, 2016; Tang
et al., 2018; Wardlow et al., 2007; Zhang et al., 2017, 2014). More
studies should be explored to provide additional information on specific
crops to enrich land-cover data (Sun et al., 2012).

The phenology-based algorithms were promising in estimating
crops areas compared with other traditional methods based on in-
dividual or multiple images (Qin et al., 2015; Wang et al., 2017). The
commonly applied phenology-based algorithm was based on the ori-
ginal time-series of vegetation indices such as the Normalized Differ-
ence Vegetation Index (NDVI) or Enhanced Vegetation Index (EVI)
(Lunetta et al., 2010; Wardlow and Egbert, 2008). This phenology-
based algorithm depends on the assumption that each specific crop has
a unique phenology reflected in its corresponding temporal profiles of
vegetation indices (Pan et al., 2012).

Mapping crop type is much more challenging than land use theme
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(King et al., 2017). Challenges in proposing efficient crop mapping
methods based on vegetation indices temporal profiles existed in two
aspects: the similarities in vegetation indices temporal profiles between
different agricultural crops, and the intra-class variability in vegetation
indices temporal profiles for specific crop (Qiu et al., 2017c). The major
challenge was the intra-class variability of vegetation indices temporal
profiles (Lunetta et al., 2010; Peña and Brenning, 2015; Qiu et al.,
2015, 2016a; Wardlow et al., 2007). There were at least three typical
groups of intra-class variability of VIs temporal profiles (Qiu et al.,
2016c): shifted ones due to phenology shift, intensified/lessened ones
owing to site-specific conditions such as fertility, water condition and
farming practice, and even more complex variations due to complexity
of crop calendars, natural conditions, and tillage management (Lunetta
et al., 2010; Peña and Brenning, 2015; Qiu et al., 2015; Wardlow et al.,
2007). Therefore, it is extremely difficult to develop efficient methods
to extract each crop across large regions simply applying the vegetation
indices temporal profiles.

Several strategies have been put forward in order to cope with these
challenges. The first strategy is to apply a shifted standard EVI time
series based on crop calendar (Zhang et al., 2014). The second strategy
is to incorporate auxiliary conditions such as temperature and rainfall
data (Howard et al., 2012; Zhang et al., 2015). For example, the land
surface temperature data was successfully utilized to determine the
temporal window of rice transplantation in order to improve phe-
nology-based rice mapping method (Zhang et al., 2015). The third
strategy is to explore unique signals of selected targets on specific time
and frequency (Qiu et al., 2017c, 2014; Zhang et al., 2013; Zhong et al.,
2016). For example, a winter wheat mapping method was developed
through combining variations before and after estimated heading dates
(Qiu et al., 2017c). The forth strategy is to combine NDVI/EVI with
other spectral indicators (Dong et al., 2015; Qiu et al., 2015; Xiao et al.,
2005). For example, a rice mapping method was proposed through
developing combined indicator based on EVI and Land Surface Water
Index (LSWI) (normalized difference in Near-infrared band and short
wave infrared band) (Qiu et al., 2015).

These strategies proved to be efficient in phenology-based crop
mapping, particularly integrated applications of these strategies. E.g.
the strategy of focusing on key phenological stages and incorporating
multiple spectral indices/bands besides vegetation indices (Qiu et al.,
2017c; Wang et al., 2017; Zhang et al., 2013). Up to date, the primary
input variables of the phenology-based methods were NDVI/EVI time
series (Wang et al., 2017). There existed great opportunities when
multiple remote sensing indices were combined to address the chal-
lenges by the intra-class variability of vegetation indices. A combina-
tion of multiple indices might substantially improve the estimations of
site-level phenology (Tornos et al., 2015).

Spectral indices sensible to water irrigation (land surface water
index, LSWI) have long been successfully utilized in deriving paddy rice
fields through combing with the vegetation indices (Dong et al., 2015;
Qiu et al., 2015; Xiao et al., 2005). These improved phenology-based
methods provided great insights for estimating specific crop areas.
However, compared with NDVI/EVI/EVI2 and its combinations with
LSWI (Dong et al., 2015; Qiu et al., 2015; Xiao et al., 2005), other
spectral indices were rarely exploited. Compared with paddy rice that
required transplanting and an inundation environment, there is no
uniqueness phenomena in dryland crops (e.g. maize, bean) cultivation
which could be utilized for identification. In addition, since maize is
widely distributed at large scale and even in different elevations, the
complexity introduced by its diverse crop phenology and planting
structure should be incorporated in maize mapping.

Maize has been major crop in China since the early 20th century
(Zhang et al., 2014). Some recent research efforts have been drawn on
maize mapping based on vegetation indices (de la Casa et al., 2014;
Jiang et al., 2016; Yao et al., 2015; Yu and Shang, 2017; Zhang et al.,
2014). The established literature has made significant contributions to
dryland crops mapping research community (Tang et al., 2018; Yu and

Shang, 2017; Zhang et al., 2014). Despite of these progresses, the
challenges by the VIs intra-class variability have not been efficiently
accounted for yet (Foerster et al., 2012; Gumma et al., 2015; Liu et al.,
2012; Yan and Roy, 2014). Strategy for dealing with the VIs intra-class
variability of maize was limited to relief the shifted vegetation phe-
nology across different areas (Zhang et al., 2014). These maize mapping
studies primarily focused on province or regional scale (i.e. Hetao Ir-
rigation District, Northeast China). Ranking as the second major maize
production country, there is no national-scale spatiotemporal explicit
and continuous information on maize planting area information in
China during the past few decades (Tan et al., 2014).

The objective of this study is two folds: (1) to develop a novel Maize
mapping algorithm by Exploring Leaf moisture variation during flow-
ering Stage (MELS) which could be applied to large areas; (2) to obtain
maize distribution maps and explore the spatiotemporal changes in
China from 2005 to 2017 based on the proposed MELS method. The
MELS algorithm was developed through designing a novel leaf moisture
based indicator from Normalized Multi-band Drought Index (NMDI)
(Wangle and Qu, 2007). The flowering stage which reflected the pro-
minent features of different agricultural crops was considered with re-
ferences to EVI2 temporal profiles. Variations of leaf moisture condi-
tions were quantified by NMDI. One indicator was designed through
highlighting the leaf moisture increase during the flowering stage
compared with other dryland crops.

2. Study area and data source

2.1. Study area

China presents a complex environment for crop mapping due to its
diversity of cropping intensity and cultivation habits across the main-
land area (Li et al., 2014). The cropping intensity gradually increases
from one in Northern China to two or three in Southern China (Qiu
et al., 2017b). Rice, wheat and maize were the three major agricultural
crops in China. Compared to other major crops such as paddy rice
(Dong et al., 2016; Qiu et al., 2016b) and winter wheat (Qiu et al.,
2017c), maize is more widely distributed across the whole country such
as in Northeast China, Inner Mongolia and Ningxia provinces (spring
maize), North China plain (summer maize), mountain regions in
Southwest China and hilly areas in the south China (http://www.stats.
gov.cn/english/) (Fig. 1). There is high diversity of maize phenology
and its planting structure (Zhang et al., 2014). There are primarily
single cropping pattern of spring maize, double cropping patterns of
summer maize plus other crops (e.g. winter wheat).

2.2. Datasets

2.2.1. The MODIS EVI2 and NMDI time series datasets
The 500m 8 day composite MODIS surface reflectance products

from 2005 to 2017 were applied. The MOD09A1, a collection 6 pro-
ducts of level 3, has been applied the procedures of atmospheric/
radiometric corrections, which were downloaded from https://ladsweb.
nascom.nasa.gov/. Two spectral indices were calculated: the 2-band
Enhanced Vegetation Index (EVI2) and Normalized Multi-band Drought
Index (NMDI). The EVI2 was computed by the surface reflectance va-
lues from red and near infrared red bands (Eq. (1)) (Jiang et al., 2008).
The NMDI was computed based on the near infrared band, and two
short waves infrared (Eq. (2)) (Wangle and Qu, 2007).
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where ρNIR, ρRed, ρSWIR6 and ρSWIR7 represented the surface reflectance
values from the Near-infrared (841–875 nm), red (620–670 nm), short
wave infrared band centered at 1640 nm (1628–1652 nm) and 2130 nm

B. Qiu et al. Computers and Electronics in Agriculture 153 (2018) 82–93

83

http://www.stats.gov.cn/english/
http://www.stats.gov.cn/english/
https://ladsweb.nascom.nasa.gov/
https://ladsweb.nascom.nasa.gov/


Download English Version:

https://daneshyari.com/en/article/6539156

Download Persian Version:

https://daneshyari.com/article/6539156

Daneshyari.com

https://daneshyari.com/en/article/6539156
https://daneshyari.com/article/6539156
https://daneshyari.com

