
Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

Robust digital control for autonomous skid-steered agricultural robots

Benjamin Fernandeza,b,⁎, Pedro Javier Herrerab, Jose Antonio Cerradab

a Research and Advanced Engineering, AGCO GmbH, Johann-Georg-Fendt-Str. 4, 87616 Marktoberdorf, Germany
bDepto. de Ingeniería de Software y Sistemas Informáticos, ETSI Informática, UNED, C/ Juan del Rosal, 16, 28040 Madrid, Spain

A R T I C L E I N F O

Keywords:
Skid-steered robot
Robust digital control
Guidance control
RST-controller
Digital pole placement
Autonomous off-road vehicles
Agricultural robotics

A B S T R A C T

There are two main issues to consider when designing a controller for autonomous off-road vehicles: velocity and
terrain irregularities. Whereas the first one is measurable, the second one is very difficult to determine. Solutions
to cover these issues could be very complex and difficult to implement in an embedded system with limited
resources. The results obtained in our previous research for an adaptive approach implemented in a tractor with
varying hitch forces, lead to the improvements presented here. This paper proposes a robust digital RST pole
placement controller design for the lateral position, with sensitivity functions tuned to cover uncertainties and
non-linearities not considered in the model. Simulations were implemented to assess the performance of the
system and the controller implementation was applied to a skid-steered agricultural robot with limited com-
putational resources and a state-of-the-art navigation system, which delivered satisfactory results.

1. Introduction

Skid-steered robots will play an important roll in agricultural ro-
botics due to their flexibility and simple construction. They are suitable
for applications such as seeding (Blender et al., 2016), scouting, ferti-
lizing and weed control. Nevertheless, there are some challenges to be
covered related not only to the steering system, but also to the inter-
action with the soil. There are intrinsic non-linearities related to the
steering system of such vehicles that make the design of a controller a
very complex task. Furthermore, the dynamics of the system are con-
stantly changing due to irregularities on the terrain. There are different
approaches for the representation of such systems (Caldwell and
Murphey, 2011; Martínez et al., 2005; Wang et al., 2015; Maclaurin,
2011; Guo and Peng, 2013; Yi et al., 2009; Al-Milli et al., 2010;
Xueyuan et al., 2013), where different non-linear controllers are ap-
plied (Caracciolo et al., 1999; Tchoń et al., 2015; Jun et al., 2014;
Pazderskit et al., 2004; Yi et al., 2007; Pazderski and Kozlowski, 2008),
some of them being even robust solutions (Arslan and Temeltas, 2011;
Inoue et al., 2013). There are also general linear solutions in the lit-
erature (Derrick and Bevly, 2008; Derrick and Bevly, 2009; Derrick
et al., 2008; Gartley and Bevly, 2008) for controlling the lateral position
of off-road vehicles by adapting the controller of the yaw rate with the
use of a Model Reference Adaptive System(MRAS). In contrast to the
MRAS solution, which requires more effort and filtering, our previous
work implements a self-tuning regulator since the error is directly

obtained from a least-square identification and a general 2nd-order
model can be used in the closed loop. This allows the solution to be
applied to different steering systems in a general way. (Fernandez et al.,
2018). Nevertheless, this solution still needs a traditional PID to be
tuned for the lateral position, which is a time consuming task. Besides,
since the identification of this solution requires a rich set of measure-
ments, it could not be ideal for small vehicles with a higher frequency
response such a small skid-steered robot. Therefore, the motivation of
this research is to find a linear and practical approach for agricultural
skid-steered robots to control the lateral position, easy to be pro-
grammed into a digital real-time embedded system with limited re-
sources and that also guarantees robustness against uncertainties due to
changes in the dynamics of the system.

This paper is divided in four sections. The first part of Section 2
presents an RST pole placement design with tracking and regulation. In
the second part (Section 2.2), static parameters used in the controller
design are introduced for shaping the sensitivity functions of the closed
loop. An experimental setup of a skid-steered robot with its results are
presented in Section 3. Finally, the conclusions can be found in Section
4.

2. Material and methods

Generally speaking, the uncertainties in the dynamics of an off-road
vehicle are related to the changes in speed and soil irregularities. A
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solution for that is to design a system that considers these uncertainties
due to nonlinearities and time varying elements. Here we present a
methodology for the design and implementation of a robust digital RST
controller using pole placement. There are automatic methods for
finding the parameters and shaping the sensitivity functions using
convex optimization or ∞H optimization (Langer and Landau, 1999;
Langer and Constantinescu, 1999; Landau and Karimi, 1998). Never-
theless, this section presents a method to control the lateral position of
a skid-steered robot by manually shaping the sensitivity functions
(Landau and Zito, 2006) due to its simplicity compared to the automatic
methods. This also allows for more flexibility in the design and a deep
understanding of how the system reacts to changes in the controller
design.

2.1. Pole placement: tracking and regulation

A canonical digital controller called RST is shown in Fig. 1. This
structure allows one to impose different dynamics by obtaining the
polynomials R and S in order to satisfy the desired regulation perfor-
mance. T introduces a tracking performance that filters at the same time a
desired trajectory + +∗y t d( 1) from a tracking model system B

A
m
m
.

The process to be controlled is represented by
−z B
A

d
and the closed

loop function from the desired trajectory ∗y to the output y is re-
presented in Eq. (1):
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2.1.1. Regulation
To compute the coefficients R and S of the digital controller we

solve a Bezout polynomial equation of the form:
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The characteristic polynomial P contains dominant and auxiliary
poles. The dominant poles PD are chosen from the digitalization of a
second-order system defined by ω0 and ζ . The digital auxiliary poles PF
improve the robustness of the controller and are normally smaller
(faster) than the real part of the dominant poles. Typical values for the
auxiliary poles are − ⩽ ⩽ −α0.05 0.51 and α2 either equals 0 or =α α2 1.
By defining the characteristic equation as follows:
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we obtain R and S by solving
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2.1.2. Tracking
The reference model =Hm

B
A

m
m
can be used to have an output y that

follows a desired trajectory ∗y each time a reference r is changed. This
tracking model Hm can take the form of a second order system with
desired ω0 and ζ . This leads to choose −T z( )1 to have a unit static gain
between ∗y and y and to compensate between regulation dynamics
defined by −P z( )1 and tracking dynamics defined by the poles of the
reference model (Am):
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Having R S T, , and a desired trajectory ∗y we obtain a control law of
the form:

+ = + +− − − ∗S z u t R z y t T z y t d( ) ( ) ( ) ( ) ( ) ( 1).1 1 1 (11)

2.2. Robust pole placement design

In order to consider uncertainties in our control design, the struc-
ture of Fig. 1 can be extended into Fig. 2 where p t( ) are disturbances,
b t( ) is noise and v t( ) disturbances on the plant input.

We can obtain then the following output, input, noise, and disturbance
sensitivity functions respectively:
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As we can see, the common denominator happens to be the char-
acteristic equation of the closed loop system of Eq. (1). The noise sen-
sitivity function Syb with a negative sign is also known in the literature as

r(t) Bm

Am

y∗(t + d + 1)
T − 1

S

R

u(t) z−dB
A

y(t)
Fig. 1. Digital canonical controller for tracking
and regulation.
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