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A B S T R A C T

The volatiles of Brown rice plant hopper (BRPH) itself is an important evidence for BRPH electronic nose de-
tection. However, during infestation, BRPH always sucks the juice from the rice stem, therefore, a study on the
similarity between BRPH’s volatiles and undamaged rice stem volatiles might help determine whether the vo-
latile contents of BRPH would be influenced by the sucking of the rice stem juice. If so, recognizing BRPH from
rice stem should be a crucial step to reduce the misjudgment of BRPH occurrence prediction by using electronic
nose, which has not been reported until now. This paper used an electronic nose (PEN3) sample of the volatile of
U3IN (under the 3th-instar nymphs), O3IN (over the 3th-instar nymphs) and healthy rice stem. Hierarchical
clustering analysis (HCA), Loading analysis (Loadings), principal component analysis (PCA), k-nearest neighbor
(KNN), probabilistic neural network (PNN), and support vector machine (SVM) were used for data analysis.
HCA, Loadings, and PCA results proved that certain similarities exist between volatiles of rice stem and BRPH,
Loadings and PCA results also indicated the volatile similarity between O3IN and rice stem is stronger than the
volatile similarity between U3IN and rice stem. To reduce the redundant information and improve computation
efficiency, according to Loadings and PCA results, sensor R5 of electronic nose has been be removed, then, the
fist four principle components has been kept as the feature values. KNN, PNN and SVM all can recognize rice
stem, O3IN, and U3IN effectively, however, KNN and PNN are more fit to solve the problem of rice stem and
BRHP recognition than SVM. This experiment results proved that certain similarities exist between volatiles of
rice stem and BRPH, also figured out the feasible way to recognize rice stem and BRPH, which could provide a
reference for further research of BRPH prediction.

1. Introduction

Rice is an important food crop in China, as it constitutes the staple
diet of approximately 65% of the total population (Xin and Li, 2009).
Biohazards are one of the main factors that influence the stable and
high rice yields. Despite insect pest control and treatment, still 4–5
billion tons of rice grain might be damaged by biohazards every year in
China (Wang, 2006). The brown rice plant hopper (BRPH), Nilaparvata
lugens (hemiptera: delphacidae), is one of the main insect pests in Asia’s
rice-growing area, and it migrates with monsoon (Gao et al., 2006). The
prevention and amelioration of BRPH have become a research hotspot
and posed a challenge for experts. The abuse of chemical pesticides in
many countries since the 1960s has caused damage to the ecological

system and weakened the natural restriction factors such as the natural
enemies of BRPH, therefore, causing improved conditions for BRPH to
thrive and have accelerated outbreaks (Wang and Wang, 2007). So far,
chemical pesticide spraying is still the primary control method for
BRPH.

The accurate acquisition of pest information can improve the effi-
ciency of pest prevention and treatment effectively. Pest information
can not only help predict pest occurrence and its control in the first
stage but also decide the quantity of pesticide to be sprayed, which
improves the service efficiency of the pesticide and protects the natural
restriction factors of insect pests. Many BRPH information acquisition
methods are currently available including the manual work detection
method (Qi et al., 1995), the acoustical signal detection method (Butlin,
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1993; Claridge and Morgan, 1993), the radar observation method
(Riley et al., 1991), the image recognition method (Shariff et al., 2006),
and the near-infrared spectroscopy method (Yang et al., 2007). The
manual work detection method mainly involves using people’s senses to
detect pest information artificially, however, it has some limitations
such as high detection cost, low detection efficiency, massive labor
intensity and sampling influence. The machine detection methods such
as acoustical signal detection method, radar observation method, image
recognition method and near-infrared spectroscopy method can reduce
labor intensity to some extent. However, the field environment is
complex, noise, illumination, pest mobility and masking are among the
factors affecting detection efficiency. Thus, all detection methods above
cannot meet the practical production requirements.

Electronic nose, namely smell scanner, was first suggested by
Persanand and Dodd at the Warwick University in England (Yan et al.,
2010). The special sensor array and pattern recognition system in the
electronic nose can acquire sample information quickly and analyze
sampling data in real time after modeling (Huang and Tian, 1999). The
detection principle of electronic nose was as follows: when volatile
compounds contacted the active material of the sensor, it created a
transient response (a series of physical and chemical changes occur).
This response from the voltage signal translated into the figure signal
via an interface circuit, which was then recorded via a computer and
sent to a signal processing unit for analysis. Afterwards, a comparison
was made with a large number of volatile compounds information in a
database that could compare and identify the type of volatiles (Jia
et al., 2006). The electronic nose works without solvent, allows a quick
analytical response, and is easy to carry. It is also a labor force saving
and objective detection method compare with manual work detection
method, and barely influenced by noise, illumination, pest mobility and
masking which affect other machine detection methods a lot. Currently,
the electronic nose is extensively used for many applicative purposes
such as environmental monitoring (Baby et al., 2000; Staples and
Viswanathan, 2006), food quality detection (Saevels et al., 2004; Zheng
et al., 2009), medical treatment and health (Fend et al., 2006; Turner
and Magan, 2004), and plant pests and diseases monitoring (Ghaffari
et al., 2012; Lampson et al., 2014). This innovative technique may
provide a new method for BRPH information acquisition. In 2005, Ye
and Hu used an electronic nose (PEN2) to detect the volatile blends in
paddy rice and classify the volatile odors of BRPHs. The experiment
indicates that the best opportunity for detecting pest information using
an electronic nose is from 15 to 36 h after pest damage, demonstrating
that electronic noses are an efficient method to obtain rice pest in-
formation (Ye and Hu, 2005). In 2006, Hu detected BRPH information
based on the obtained electronic nose sensor array data. The feature
parameters from each sensor curve, such as maximum, max differential
value, the mean value and stable value, were extracted and used for
pattern recognition input; principal component analysis (PCA) was
adopted to analyze the test sample. The experiments revealed that the
electronic nose was able to detect whether rice plants were attacked by
insect pests, the extent of rice damage and the amount of pests on each
stem of paddy rice (Hu, 2006). Zhou and Wang used an electronic nose
(PEN2) to discriminate between the volatile profiles emitted by unin-
jured rice plants and rice plants exposed to different numbers of BRPH
adults. The results indicated that it was possible to separate differently
treated rice plants using electronic nose signals, and the electronic nose
technology was an effective insect monitoring method (Zhou and Wang,
2011a). In 2011, Zhou and Wang used an electronic nose (PEN2) to
analyze rice plants that were subjected to different types of treatments
causing damage, including damage caused by the rice Striped Stem
Borer, damage caused by the BRPH, mechanical damage, and the re-
sults were compared with those of undamaged control plants. The re-
sults indicated that e-nose could successfully discriminate among rice
plants with different types of damage (Zhou and Wang, 2011b). The
volatiles of BRPH itself is an important evidence for BRPH electronic
nose detection. However, during infestation, BRPH always pierces into

the vascular tissue of rice stem and sucks the juice from the rice plant by
its stylet (Huang and Feng, 1993). Therefore, a study on the similarity
between BRPH’s volatiles and undamaged rice stem volatiles might help
determine whether the volatile contents of BRPH would be influenced
by the sucking of the rice stem juice. If so, recognizing BRPH from rice
stem should be a crucial step to reduce the misjudgment of BRPH oc-
currence prediction by using electronic nose, which has not been re-
ported until now.

This paper used electronic nose technology for BRPH and rice stem
(the same variety on which the experimental BRPH had been feeding)
sampling. Then, we used hierarchical clustering analysis (HCA),
Loading analysis (Loadings), principal component analysis (PCA), k-
nearest neighbor (KNN), probabilistic neural network (PNN), and sup-
port vector machine (SVM) for data analysis. Our study will provide a
reference for further research of BRPH detection.

2. Materials and methods

2.1. Experimental materials

All the experimental BRPHs and Rice plants were provided by the
Institute of Plant Protection of the Academy of Agricultural Sciences in
Guangzhou, Guangdong province, China. Overall, 6 identical plastic
buckets were used for the control cultivation of rice seedlings
(Meixiangzhan) under same growth condition. Six rice seedlings were
planted in each bucket. To ensure good growing conditions, rice plants
were grown in a pest-free outdoor environment with sufficient sunlight.
After all of the rice seedlings grew to the tillering stage, 3 buckets were
moved to a rearing cage for BRPH feeding and the others were moved to
a pest-free rearing cage. On the BRPH feeding cage, 10 at least the third
generation adult BRPH individuals (always fed by Meixiangzhan rice
plant) were added to each bucked, the next generation BRPH was used
for experiment, 30 of BRPH nymph individuals under third instar
(U3IN) and over third instar (O3IN) was determined.

2.2. Sampling methods

This experiment was performed using the electronic nose (PEN3,
Airsense Analytics GmbH). This electronic nose system sampling by its
10 metal oxide semiconductor gas sensors, the performances of sensors
in PEN3 are listed in Table 1. The output signal of each sensor is G/G0.
G0 represents the electronic conductivity (resistance) of sensor during
the zero gas (ambient air after filtered by activated carbon) detection,
and G represents the electronic conductivity (resistance) of sensor
during the sample gas detection. To make electronic nose achieve the
operating temperature, we warmed it up for 10 s before sampling. The
working parameter settings were as follows: sampling interval was 1 s;

Table 1
Response features of the sensors in electronic nose (PEN3).

Number in
array

Sensor
name

Object substances for
sensing

Threshold Value
(mL·m−3)

R1 W1C Aromatics 10
R2 W5S Nitrogen oxides 1
R3 W3C Ammonia and aromatic

molecules
10

R4 W6S Hydrogen 100
R5 W5C Methane, propane and

aliphatic non-polar
molecules

1

R6 W1S Broad methane 100
R7 W1W Sulfur-containing organics 1
R8 W2S Broad alcohols 100
R9 W2W Aromatics, sulfur-and

chlorine-containing
organics

1

R10 W3S Methane and aliphatics 10
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