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A B S T R A C T

A primary utility of satellite remote sensing technology is monitoring and assessment of agricultural lands for
determining the area, amount, type, and quality of crop production. Since the mid-1970s agricultural scientists
have sought to advance this utility through development of precision agriculture (PA) methods and technologies.
Consequently, PA has taken advantage of freely available medium-spatial resolution remote sensing technology
and instrumented fields to monitor crop biomass, phenology, and yield of crops at the sub-field to larger scales.
The main goal of this study was to determine cotton lint yield in a 73-ha irrigated field in western Tennessee
using remote sensing technology. We used two growing seasons (2013 and 2014) of Landsat 8 transformed to 8
input predictors including Red, near infra-red (NIR), the simple ratio (SR), normalized difference vegetation
index (NDVI), green NDVI (GNDVI), and the tasselled cap transformation’s greenness, wetness, and soil
brightness indices: GI,WI, and SBI, respectively, as proxies for cotton lint yield and crop phenology (in this study
all input predictors are being referred to as crop indices, CIs). We used artificial neural network (ANN) approach
to generate 61,200 models relating individual CIs and CI phenology to field estimates of lint yield to predict and
map the field’s cotton lint yield in two cropping seasons. The correlation between cotton lint yield and CIs
ranged from -0.20 to 0.60 in 2013 and from−0.79 to 0.84 in 2014. The best ANN models were in 2013 (r=0.68
and the normalized MAE=11%) and 2014 (r=0.86 and the normalized MAE=8%) growing seasons. The WI
and GI were the best CI predictors of cotton lint yield, and overall for the early to mid-season prediction, CI
phenologies had better performance than single date CI models. Consequently, we recommend the use of Landsat
8 derived WI or GI phenology to predict crop yields.

1. Introduction

Precision agriculture (PA) has progressed as a result of emerging
innovations in instrumentation and measurements that allow con-
sideration of agricultural practices at multiple spatial (and temporal)
scales from farm to subfield to individual plants. The main promise of
PA is the development of an understanding of crop growth and yield
dynamics in response to spatiotemporal variabilities in climate and the
physical environment. This knowledge will help farmers optimize site-
specific management decisions. In situ application of mid- to high spa-
tial resolution, airborne and/or satellite remote sensing technology has
been of particular interest to the PA community, particularly for the
investigation of the variability of crop growth and yield (Leon et al.,
2003, Guo et al., 2012; Heermann et al., 2002; Vellidis et al., 2004;
Wang and Shen, 2015; Yang & Everitt, 2002).

The Landsat series of satellites have been collecting global data
since 1972, which means that long term historical archives of multi-
spectral data are freely available to conduct annual and interannual
time series analyses of the status of crop phenology over a number of
growing seasons (Wulder et al., 2012). The reflectance of crop canopies
and the bare soil background changes throughout a cropping season as
plants go through different growth stages and soil water status. Proxy
indicators of soil properties as well as crop phenology and yield dy-
namics can be derived from moderate pixel resolution Landsat data.

A variety of vegetation or crop indices (CIs) have been developed
from the portions of the electromagnetic spectrum detected by parti-
cular sensors on various platforms (e.g., the Operational Land Imager
(OLI) on Landsat 8) including the simple ratio (SR, Birth and McVey
1968), the normalized difference vegetation index (NDVI, Rouse et al.,
1973), the green NDVI (GNDVI, Gitelson et al., 1996), and the
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“Tasselled Cap” transformation (TCAP, Kauth & Thomas 1976). These
CIs are calculated as:
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where NIR is near-infrared reflectance (e.g., Landsat 8’s band 5 at
0.851–0.879 μm), R is red reflectance (e.g., Landsat 8’s band 4 at
0.636–0.673 μm), and G is green reflectance (e.g., Landsat 8’s band 3 at
0.533–0.590 μm).

Among CIs in general, NDVI is arguably the most widely used index
in the world, much less in PA. NDVI and other crop indices have been
shown to be effective measurement proxies for various crop char-
acteristics including biomass, net primary productivity, density, plant
canopy cover, leaf area, and plant water content (Sellers, 1985;
Washington-Allen et al., 2006; West et al., 2010). Most of these indices
were developed to take advantage of the consistent difference in in-
teractions (i.e., absorption, emittance, transmission, and reflectance)
with crop canopies between red and near-infrared radiation (Clevers,
2014). Other parts of the electromagnetic spectrum have also proven
useful for agricultural applications. For instance, leaf emittance in the
thermal region of the electromagnetic spectrum has been widely used to
quantify evapotranspiration and thus crop response to water stress
(Hatfield et al., 2008).

Kauth & Thomas (1976) developed the TCAP to reduce the corre-
lated radiation components of the 4-dimensional structure of Landsat 1
Multispectral Scanner data when tracking the phenology of yellow corn
crops. The TCAP is a weighted form of a principle component analysis
that was used to reduce the dimensionality or degree of correlation
between the bands or channels of a multispectral sensor. This is done
through the consolidation of a sensor’s highly correlated bands into a
set of new bands that are uncorrelated with each other (Baig et al.,
2014). For example, Landsat 5’s Thematic Mapper sensor detects 7 parts
of the electromagnetic spectrum or individual bands or channels with
differing levels of correlation between each band. Application of the
TCAP produced three new bands and/or indices of interest to this study
called the soil brightness index (SBI), that detects bare ground; a wet-
ness index (WI), that detects water bodies, soil and vegetation moisture
content; and a greenness index (GI) that detects vegetation cover or
biomass (Crist 1985; Crist & Cicone 1984). When these 2–3 bands are
visually compared in Cartesian space using either a two-dimensional (2-
D) or 3-D scatter plot a “tassell cap” relationship is observed (Kauth &
Thomas, 1976). Plotting a 2-D or 3-D time series of the TCAP tracks
different crop phenologies and soil moisture dynamics within a growing
season (Baig et al., 2014; Kauth & Thomas, 1976).

New sets of sensor specific TCAP weighted coefficients have been
developed for each of the sensors in the Landsat series as well as other
sensors including RapidEye (Crist, 1985; Schönert et al., 2015).
Schönert et al. (2015) reported promising preliminary results for the
retrieval of crop biophysical attributes (e.g. leaf area index, plant
chlorophyll and nitrogen) at field-level using RapidEye sensor-derived
TCAP.

Consequently, these past studies suggested that remote sensing,
particularly mid-resolution sensors like Landsat 8, could be used as
effective PA tools for tracking spatially and temporally heterogeneous
plant and soil moisture dynamics over the course of a few growing
seasons, i.e., crop phenology. Thus, these studies demonstrated that an
annual time series of remotely-sensed CIs may correlate with variable
cotton lint yield (due to the heterogeneous spatial distribution of soil
moisture) (Hypothesis 1). Further, a time series of annual CIs will
characterize cotton lint phenology and may predict cotton lint yield at
the subfield to farm spatial scales of observation (Hypothesis 2).

We examined two key research questions:

(I) Which of the Landsat 8 derived CIs provides the best prediction of
cotton lint yield at the subfield level?

(II) Which approach provides the best growing season prediction of
cotton lint yield, the use of multiple CI’s at a single date or CI crop
phenology produced from an annual time series?

The objectives of this study will be implemented over the 2013 and
2014 growing seasons and are to:

(I) Use an annual time series of Landsat 8 derived CIs to characterize
cotton phenology.

(II) Determine the utility of these remotely-sensed CIs as input pre-
dictors for in-season prediction of cotton lint yield using Artificial
Neural Network (ANN) models.

2. Material and methods

2.1. Study area & data collection

We conducted a two-year (2013 and 2014) on-farm irrigation ex-
periment on a 73-ha property in the semi-humid region of west
Tennessee to investigate cotton’s response to supplemental irrigation
management (Fig. 1). Climate records for the area indicate a mean
monthly precipitation of 97mm and a mean temperature of 21 °C
throughout the May to November growing season (National Climate
Data Center, 2015). The field’s elevation ranges from 77 to 80-m and it
contains Robinsonville loam and fine sandy loam, Commerce silty clay
loam, and Crevasse sandy loam soils that were formed in the loamy and
sandy alluvium of Mississippi river terraces (Soil Survey Staff, 2015).

Haghverdi et al. (2015b) described the soil data collection where a
total of 400 undisturbed core soil samples were collected from 100
locations at 4 depths on March 21 and 22, 2014. Measures of soil tex-
ture, soil water content, and bulk density within the crop effective root
zone (i.e. 0–100 cm) were determined from these samples in a labora-
tory. Additionally, soil apparent electrical conductivity (ECa) was col-
lected in situ by means of a Veris 3100 (Veris Technologies, Salina, KS)
instrument. As much as a four-fold variability in plant available water
(PAW: the difference between water contents at field capacity and

Fig. 1. The 73-ha study field and its 2 center pivots in the Dyer County humid
region of west Tennessee.
Adapted from Haghverdi et al. (2016)
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