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A B S T R A C T

Spatial awareness and memory are key factors for a robot to evolve in semi-structured and dynamic environ-
ments as those found in agriculture, and particularly in fruit crops where the trees are regularly distributed. This
paper proposes a probabilistic method for mapping out-of-structure objects (weeds, workers, machines, fallen
branches, etc.) using a Kernel density estimator. The methodology has theoretical and practical advantages over
the well-known occupancy grid map estimator such as optimization of storage resources, online update, high
resolution, and straightforward adaptability to dynamic environments. An example application would be a
control scheme through which a robot is able to perform cautious navigation in areas with high probability of
finding obstacles. Simulations and experiments show that large extensions can be online mapped with few data
and high spatial resolution.

1. Introduction

The United Nations proposed a 2030 agenda with 17 goals for
sustainable development, placing food and agriculture as crucial pillars
U. Nations. A profound change of the global food and agriculture
system is needed to nourish today’s 815 million hungry and the addi-
tional 2 billion people expected by 2050. One of the proposed objec-
tives is to “Ensure sustainable consumption and production patterns”,
which points to do more and better with less. Precision agriculture is a
modern farming practice that makes production more efficient by the
proper application of inputs like water, fertilizer, pesticides, etc. at the
correct time to the crop for increasing its productivity and maximizing
its yields. Besides, precision agriculture provides farmers with a wealth
of information to keep track of the farm, improve decision-making,
ensure greater traceability, enhance marketing of farm products, im-
prove lease arrangements and relationship with landlords, and enhance
the inherent quality of farm products. A review of the motivations of
implementing precision agriculture technologies is given in Pierpaoli
et al. (2013).

In both developed and developing countries, the primary limiting
factor in the development of agricultural industries is the manpower
(Bechar and Vigneault, 2016), since it is the largest single cost-con-
tributor in agriculture representing about 40% of the operational costs
(Bechar and Eben-Chaime, 2014). The operational and socio-
demographic factors that influence significantly in the adoption of
precision agriculture technologies by German crop farmers are analyzed

in Paustian and Theuvsen (2017). In the 20th century, technological
progress in developed countries reduced the manpower for farming
activities by a factor of 80 (Ceres et al., 1998). The transient nature of
manpower in countries where wages are low reduces production cap-
ability and quality (Bechar and Vigneault, 2016). Furthermore, there
are heavy manual tasks that cause injuries or chronic problems to
workers (Perez-Ruiz et al., 2014). The enormous workforce force re-
quired for the different operations causes bottlenecks, downgrading
productivity, reducing yield and increasing costs. Besides, problems
such as aging of the workforce and shortage of rural workers contribute
to the lack of manpower (Iida et al., 2013). This high manual labor
requirement impedes cost reductions and increases the demand for
robotics and automation (Bechar et al., 2007). Therefore, some human
workers must be relocated to other sectors such as maintenance and
programming of machines, supervision of tasks, or industrialization of
primary agricultural goods (Autor, 2015). Statistics show that the
agriculture labor is not lost but transformed (Employment Projections
Program, 2017). A detailed analysis of the replacement of labor by
machines is presented in Bechar and Vigneault (2016).

The use of robots enables the farmer to automate precision agri-
culture tasks (Yahya, 2018). There are already companies that offer
robots that assist in agricultural tasks, such as Deepfield Robotics, Naïo
Technologies, or Saga Robotics, to list some of them. The development
of an agricultural robot must include the creation of sophisticated and
intelligent algorithms for sensing, planning and controlling to cope with
challenging, unstructured and dynamic agricultural environments
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(Edan and Bechar, 1998). A review of recent research and develop-
ments in robotics for agricultural field applications and associated
concepts, principles, gaps, and limitations can be found in Bechar and
Vigneault (2016). One of the main limitations is the uncertainty accu-
mulation during navigation, which can be reduced by including land-
marks on the whole farm (such as QR codes in each tree) or by using
prior information (such as an environment map or particular distribu-
tions of the trees), among others. For this reason, the mapping of par-
tially structured agricultural environments is a valuable resource for
precision agriculture. The regular geometry of the trees in an orchard
(see Fig. 1) allows having prior precise information of their locations,
which can be exploited by several automatic systems (Gimenez et al.,
2015). Nevertheless, other objects, which are external to this regular
structure, are also present in the agricultural environment. Among
others, weeds, fallen branches, machinery, and rural workers are con-
sidered out-of-structure objects. These elements are also essential to be
mapped because they can affect the robot navigation as well as the
Human-Robot interaction (HRI) tasks. In such environments, the robot
must be part of a more adaptive system, with the possibility to dyna-
mically introduce new objects to the scene (Kaldestad et al., 2012).

Weeds and workers are part of any agricultural environment (see
Fig. 1). Weeds affect the production by reducing crop yield and quality,
delaying or interfering with harvesting, preventing water flow, etc.
(Scursoni et al., 2011; Zimdahl, 2007). Tasks and other elements for
weed control can be optimized by detecting and mapping the areas
where weeds are more likely to grow (Torres-Sospedra and Nebot,
2014; Dammer, 2016; Panetta, 2015). On the other hand, the mapping
of rural worker traffic allows generating appropriate control algorithms
for HRI. Human capabilities of perception, thinking, and action are still
unmatched in environments with anomalies and unforeseen events
(Tervo and Koivo, 2014). Consequently, human and robot skills are
complementary.

Dynamic environments are best represented with probabilistic maps
in which areas with the highest probability of occupation are high-
lighted (see the working area in Fig. 1). This mapping procedure is

often associated with the costly methods of occupancy grid maps in
which the environment is regularly partitioned, and a probability is
assigned to each grid cell (Thrun et al., 2005). In large-scale environ-
ments or when there is the need for high resolution, memory con-
sumption of this methodology can become prohibitive, and even more if
a 3D map is desired. The grid-based maps can be optimized using oc-
trees, that allows to generate an original map with low resolution and
refine each grid as their occupation probability increases (Hornung
et al., 2013). The tree representation of the map reduces access times,
memory consumption, and can also be used as a multi-resolution re-
presentation since it can be cut at any level to obtain a coarser sub-
division (Hornung et al., 2013). However, these optimizations are not
naturally designed to work in dynamic environments, and the in-
corporation of probabilities is not straightforward since it requires
probabilistic models that are heuristically adjusted.

The main contribution of this paper is the development of a prob-
abilistic method for mapping out-of-structure objects with the following
properties: (i) It only requires storing the coordinates of an observation
set detected outside the regular structure of the orchard; (ii) The ob-
servation set allows a nonparametric estimate of the unknown density
function f of the out-of-structure objects through a Kernel estimator;
(iii) It obtains a probabilistic map with high spatial resolution; (iv) It
allows adapting the amount of stored information to the processing and
storage capacities without compromising the map spatial resolution.
The mapping procedure also allows incorporating new areas without
increasing the required memory space. This is achieved by using a novel
recursive subsampling methodology, which eliminates redundant non-
informative data and reduces outliers. (v) The access times to the data
can be optimized if a tree structure (like octrees) is generated, in which
the observations are grouped according to the similarity of the decimal
representations of their coordinates. (vi) It does not require constant
updating of the probabilistic map, and the probability of observing an
object at a specific point (and not the probability of finding an object
within a grid cell) can be estimated online; (vii) It does not require:
initialization, prior knowledge of the areas to be mapped, nor perform
costly copy operations every time the map area is expanded; (viii) Free
and unknown areas are not stored, and they are detected by the absence
of points in spatial windows. (ix) It allows mapping dynamic environ-
ments by incorporating a forgetting factor. In this map, there are no
regions without a significant probability of objects presence. (x) Kernel
estimators are consistent and probabilistically optimal. Instead, the
histogram estimator (or its generalization in grids) requires a cell size
reduction (increasing the amount of storage memory required) to
converge theoretically to f while increasing the sample size (Györfi
et al., 2002). (xi) The estimates do not need the probabilistic modeling
of the sensor, which generally contains heuristically adjusted para-
meters. (xii) It facilitates loop-closures in slam processes since original
observations are stored instead of increasing data counters in each grill
losing spatial information.

In addition, this paper presents an example application in which a
robot uses this map to achieve cautious navigation by reducing its ve-
locity in areas with high probability of finding rural workers. This na-
vigation strategy includes an obstacle avoidance controller based on
impedance. Fig. 1 presents two typical environments where the pro-
posed system can be applied. In the first case, a worker performing a
task on trees of the same line is observed. The points generated by these
observations are incorporated into a database, which is kept bounded
by using a recursive subsampling procedure. If the observation area is
frequently occupied, then the algorithm marks it as a high traffic zone
(working area in Fig. 1) and activates a cautious navigation mode.
However, if the worker is never again observed in this region, the al-
gorithm will forget these observations over time. Weeds are also de-
tected and marked as areas with collision probability, but if they are
removed, this area will be marked as a free area again. Fig. 1(b) pre-
sents a similar situation, in which a worker crosses the likely path of the
robot. If this passage is commonly used for workers (or machines), the

Fig. 1. Typical fruit grove environments with trees regularly located and
workers performing a task. The working and weed areas are highlighted in
order to identity regions of free movement and cautious navigation.
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