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A B S T R A C T

This study aimed to investigate whether the optimal vegetation indices (VIs) derived from the in situ hyper-
spectral data to estimate the nitrogen nutrition index (NNI) can also be used at the local scale using unmanned
aerial vehicle (UAV) multispectral images, and whether texture metrics derived from UAV images could improve
the remote estimation of the NNI in winter oilseed rape. Three field experiments with different N fertilization
levels were conducted in two sites in Hubei Province, China. The mechanistic and empirical methods were both
employed to estimate NNI. With the in situ hyperspectral data, the empirical method based on structural VIs (R2

is about 0.70) or the photochemical reflectance index (PRI) (R2=0.73) provided more accurate estimations of
NNI than the mechanistic method did (R2= 0.62). Although most of the studied VIs were strongly correlated
with the NNI, they had different responses to the NNI at the low N fertilization and the optimal to excessive N
fertilization rates. For the UAV multispectral images, the mean VI of all pixels within the region of interest (ROI)
(referred to VI_mixed) outperformed the mean VI of vegetation pixels within the ROI (referred to VI_pure). The
mean normalized difference vegetation index (NDVI_mixed), the modified soil adjusted vegetation index 2
(MSAVI2_mixed), and the red edge chlorophyll index (CIred edge_mixed) of all pixels within the ROI yielded more
accurate NNI estimates than the other VIs. Furthermore, the stepwise multiple linear regression models with VIs
and texture metrics of VIs provided more accurate NNI estimations than the models based solely on VIs. Results
of this study suggested the great potential of UAV multispectral images in monitoring the crop N status at local
scales.

1. Introduction

Winter oilseed rape (Brassica napus L.) is one of the most important
oilseed crops in the world. The Yangtze River Basin in China accounts
for one-fifth of the rapeseed yield and cultivation area in the world
(FAOSTAT, 2014). Winter oilseed rape in this area is usually grown in
rotation with rice, cotton or soybeans, leading to the limited supply of
soil nutrients (Degenhardt and Kondra, 1981; Zhang et al., 2006). To
maintain the high yields under an intensive cropping system, large
amounts of nitrogen (N) fertilizer are applied to the field. Excessive N
are retained by the soil and/or lost through gasification, leaching and
runoff, leading to serious environmental problems such as greenhouse
gas emissions and water contamination (Zhu and Chen, 2002; Zhao
et al., 2007). The accurate and rapid diagnosis of the N status of winter

oilseed rape in the Yangtze River basin is important to ensure both the
yield and the quality while minimizing environmental damages caused
by the excessive application of N fertilizers.

Remote sensing is a unique tool for providing information linked to
plant N status in a rapid, cost-effective, and non-destructive way (Inoue
et al., 2012; Chen et al., 2010; Pellissier et al., 2015; Feng et al., 2016).
Although N absorption features at 1510 nm, 1730 nm, 1940 nm,
1980 nm, 2060 nm, 2180 nm, 2240 nm, 2300 nm, and 2350 nm were
discovered in the spectra of dried ground leaves, these absorption fea-
tures cannot be used to remotely estimate the N content/concentration
in green leaves, because strong water absorption (centered at 1450 and
1940 nm) in the shortwave infrared region obscures N absorption fea-
tures (Kokaly and Clark, 1999). The close relationship between chlor-
ophyll and the N content in plants is the foundation of most remote
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sensing approaches that assess the plant N status (Kokaly et al., 2009;
Vos and Bom, 1993). Vegetation indices (VIs) based on red, red edge,
and near infrared spectral bands have been shown to be effective pre-
dictors of chlorophyll as well as the N content in plants (Solari et al.,
2008; Schlemmer et al., 2013; Clevers and Gitelson, 2013).

Leaf and canopy N concentration decrease through the growth
season as biomass increases until senescence, and hence they are not
the optimal indicators of the plant N status (Chen et al., 2010; Rathke
et al., 2006). The nitrogen nutrition index (NNI) was developed to di-
agnose plant N status in order to adjust N fertilization (Lemaire and
Meynard, 1997). The NNI is calculated as the ratio of the measured
plant nitrogen concentration (PNC) to the critical PNC at a given bio-
mass level, wherein the critical PNC is the minimum N concentration
required for the maximum biomass production during the vegetative
period (Lemaire et al., 2008). The potential of estimating the NNI with
remotely sensed data have been explored for wheat (Mistele and
Schmidhalter, 2008; Chen, 2015; Cao et al., 2015; Jin et al., 2015),
maize (Cilia et al., 2014; Xia et al., 2016), and rice (Yao et al., 2014;
Huang et al., 2015; Huang et al., 2017). NNI can be estimated using the
mechanistic method or the empirical method (Lemaire et al., 2008).
The mechanistic method estimates NNI based on a known critical N
curve that are derived from massive ground experiment data, and PNC
and biomass that are estimated with remote sensing data. The empirical
method builds the regression models between the NNI and reflectance
measurements or VIs. Studies have found that several VIs, such as the
normalized difference vegetation index (NDVI), the red edge inflection
point (REIP), and the modified green soil adjusted vegetation index
(MGSAVI), are closely related with NNI (Mistele and Schmidhalter,
2008; Cao et al., 2015; Chen, 2015).

Most investigations on the remote diagnosis of the crop N status use
in situ hyperspectral data. Whether results derived from in situ hyper-
spectral reflectance can be applied to large areas using aerial or satellite
data still requires additional research (Huang et al., 2015; Huang et al.,
2017). With the recent development of low-cost compact imaging
spectrometers and unmanned aerial vehicle (UAV), a UAV-based mul-
tispectral imaging system can provide a more flexible and efficient al-
ternative to monitoring crops in large areas. Attempts have been made
to assess the crop N status with the UAV-based multispectral imaging
systems. Miao et al. (2009)’s study combined chlorophyll meter read-
ings with aerial hyperspectral images to evaluate the maize N status.
Cilia et al. (2014) applied aerial hyperspectral images to estimate the
maize NNI using the mechanistic method. Nigon et al. (2015) predicted
the N stress in potatoes using aerial hyperspectral images. Due to the
high spatial resolution of UAV images, their texture features of UAV
images may also be useful for crop monitoring. The image texture
measures the heterogeneity in the tonal values of pixels within a de-
fined area of an image (Champion et al., 2008; Wood et al., 2012).
Remotely sensed image textures have been used for characterizing ve-
getation structure and as the input for vegetation classifications (Herold
et al., 2004; Wood et al., 2012; Dube and Mutanga, 2015). However, to
our knowledge, texture features of UAV images have not been used to
assess the crop N status.

The objectives of this study are to (1) study whether the optimal VIs
derived from the in situ hyperspectral data could be used in the UAV
multispectral images to estimate the NNI in winter oilseed rape, and (2)
to investigate if the textural metrics derived from UAV multispectral
images could improve the estimation of the NNI.

2. Materials and methods

2.1. Study sites and experimental design

One field experiment was conducted during 2014–2015 in Wuxue
(30°06′ N, 115°35′ E) and two field experiments were conducted during
2015–2016 and 2016–2017 in Shayang (30° 43′ N, 118° 18′ E) (Fig. 1,
Table 1). Both study sites are located in Hubei Province, China, and

have a humid sub-tropical monsoon climate. The rapeseeds of cultivar
“Huayouza No. 9” were used in our study. In the three experiments,
rapeseeds were first sown in the prepared seedbeds in September using
high fertility soils. The seedlings were then transplanted into the tilled
field in October, when seedlings had five to six leaves, at a density of
112,500 plants ha−1. The soil fertility status in the top 20 cm soil layer
measured before the experiments are shown in Table 2. The soil pH
value was measured using a pH electrode at a water/soil ratio of 2.5:1;
organic matter was determined using the chromic acid titration
method; the total N was determined using the Kjeldahl acid-digestion
method; the Olsen-P value was measured using the NaHCO3 method;
the available K was measured using a flame photometer method; and
the available B was determined using the curcumin colorimetric
method (Bao, 2000).

During 2014–2015, the experimental site was divided into 24 plots
randomly assigned to eight treatments with three replications for each
treatment. During 2015–2016, the site was divided into 27 plots, ran-
domly assigned to nine treatments with three replications for each
treatment. For Experiments 1 and 2, the area of each plot was 30m2

(15.0 m×2.0m), and the furrow between two plots was 0.5m in
width. During 2016–2017, the site was divided into 21 plots, randomly
assigned to seven treatments with three replications for each treatment.
The area of each plot was 10m2 (5.0m×2.0m), and the furrow be-
tween two plots was 0.5m in width. The N fertilization treatments for
each experiment are shown in Table 2.

Urea containing 46% N was used as the N fertilizer in all experi-
ments (Table 3). According to the previous study on the yield response
to N fertilizer using data of 1457 site-year on-farm experiments in the
Yangtze River Basin (Li et al., 2015), N0 – N135 were low N treatments,
N180 – N240 were optimal N treatments, and N270 – N360 were ex-
cessive N treatments. The fertilizer rates of nutrients other than N were
the same among the experiments, and they consisted of
750 kg P2O5 ha−1 (superphosphate, 12% P2O5), 200 kg K2O ha−1 (po-
tassium chloride, 60% K2O), and 15 kg B ha−1 (borax, 10.8% B). The
fertilizers were plowed into the topsoil as the base fertilizer before the
seedlings were transported to the field.

2.2. Data

2.2.1. Vegetation sampling
Ground sampling campaigns were conducted during the vegetative

period of winter oilseed rape (Table 1). The leaf area index (LAI) was
measured using a plant canopy analysis instrument (SunScan, Probe
type SS1, Delta-T Devices company, England). After the LAI and canopy
spectra were measured, a 0.5 m * 0.5 m quadrat was randomly placed in
each plot for three times. The number of winter oil seed rape specimens
in the quadrat was counted, and the average value of three randomly
placed quadrats was used to calculate dry mass (DM). Four plants from
each plot were destructively sampled to measure the DM and PNC. The
samples were weighed to obtain the fresh mass, cleaned, de-enzymed at
105 °C for 30min, and later dried at 70 °C in an oven to a constant
weight to obtain the DM. The above-ground DM in Mg ha−1 was cal-
culated for each plot based on the number of winter oilseed rape spe-
cimens in the quadrat, and DM was weighed in the lab. 0.15-g sample of
the DM was used to determine the PNC with the micro-Kjeldahl method
(Yu et al., 2013). The samples were digested with H2SO4-H2O2, and
then flow injection analysis (FIA, AA3, SEAL, Germany) was used to
determine the PNC.

2.2.2. Ground-based spectroscopy
The canopy spectra were collected under sunny and cloudless con-

ditions around midday (10:00–14:00) local time using the Analytical
Spectral Devices Field Spec Pro spectrometer (ASD, Boulder, CO, USA).
A fiber-optic sensor with a 25° field of view was placed 1m above the
canopy in a nadir position. A white spectralon reference panel was used
for calibration before the canopy spectra were measured for each plot.
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