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A B S T R A C T

Commercial and scientific plant breeding programs require the phenotyping of large populations. Phenotyping is
typically a manual task (costly, time-consuming and sometimes arbitrary). The use of computer vision techni-
ques is a potential solution to some of these specific tasks. In the last years, Deep Learning, and in particular
Convolutional Neural Networks (CNNs), have shown a number of advantages over traditional methods in the
area. In this work we introduce a computer vision method that estimates the number of seeds into soybean pods,
a difficult task that usually requires the intervention of human experts. To this end we developed a classic
approach, based on tailored features extraction (FE) followed by a Support Vector Machines (SVM) classification
model, and also the referred CNNs. We show how standard CNNs can be easily configured and how a simple
method can be used to visualize the key features learned by the model in order to infer the correct class. We
processed different seasons batches with both methods obtaining 50.4% (FE+ SVM) and 86.2% (CNN) of ac-
curacy in test, highlighting the particularly high increase in generalization capabilities of a deep learning ap-
proach over a classic machine vision approach in this task. Dataset and code are publicly available.

1. Introduction

Plant phenotyping can be defined as the identification and quanti-
fication of effects on the phenotype (i.e., the appearance and behavior
of plants), using appropriate protocols and measurements, as result of
both genotype differences and the interaction with the environment
(Fiorani and Schurr, 2013). In their search for increased yields, plant
breeding programs require the phenotyping of large populations,
evaluating some or even several useful traits (Ghanem et al., 2015). In
addition, the results must be validated through multiple environments
and replicated trials, increasing the burden of the process. Un-
fortunately, phenotyping is typically a manual task, therefore laborious,
costly, and time-consuming. Even more, visual evaluation over many
segregating plants in the field is very difficult and error-prone due to
the observer subjectivity. As a consequence, phenotyping has become a
bottleneck for plant breeding programs (Singh et al., 2016). Thus, the
possibility of developing quick, accurate and repeatable methods to
characterize individual plant phenotypes will increase the quality of the
selection process and will provide a useful tool to foster the in-
corporation of desirable traits into commercial germplasm.

In recent years, imaging-based automatic methods have been in-
troduced to plant phenotyping (Fahlgren et al., 2015; Scharr et al.,
2016), using diverse devices and multiple scales. For example, Bendig

et al. (2014) used aerial images to estimate the biomass of entire crops.
Giuffrida et al. (2015) developed an efficient method for counting
leaves in rosette plants with images of individual plants in a controlled
environment in the context of the Leaf Counting Challenge held in the
CVPPP 2015 workshop. This challenge led to ongoing research which is
using deep learning techniques, (Aich and Stavness, 2017; Dobrescu
et al., 2017) for instance. Also (Pound et al., 2017) used deep learning
for localising wheat spikes and spikelets.

In particular, the yield of a soybean crop depends on three major
components: the number of pods per plant (PN), the number of seeds
per pod (SPP) and the seed size (Fehr, 1987). Under cultivation con-
ditions, yield is subject to strong genotype-environment interaction.
However, of the three main components, SPP is the least subject to
environmental influence (i.e. it is a characteristic of the genotype
(Board and Harville, 1998)) thus offering the opportunity to genetically
manipulate it to improve the yield potential of a cultivar.

The main goal of any breeding program is to develop varieties with
high yield potential. The capability of selecting for traits linked to yield
components such as high PN and SPP, early during the selection pro-
cess, would increase the efficiency of the breeding program. This im-
plies to cope with large genetic-engineering experiments consisting in
the order of tens of thousands plants to be manually labeled pod by pod,
among the other previous mentioned features, to select the best
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phenotype.
Counting the number of pods per plant is a simple but tedious task

that can be easily automated. Furthermore, estimating the number of
seeds per pod is laborious and difficult as well, requiring visual in-
spection of each pod by a human expert. The difficulty of the task relies
on the wide range of maturing sizes of seeds within the pods as a result
of environmental or genetic factors. All seeds must be counted even if
they have suffered an abortion in the early stages of pod development.
In such limit cases a trained expert can still visually distinguish subtle
changes in pod shape evidencing the presence of an aborted seed. As a
measure of the difficulty of the task, we point out that a group of
trained operators achieve an accuracy of 84% (with an standard de-
viation of 2%).1

In this work we introduce an automated tool that could replace
human experts in this counting task, allowing the increase in scale of
breeding programs without losing accuracy and, in consequence, the
speed up of the complete process. There are some precedents for au-
tomatic object counting from digital images in the context of agri-
cultural applications (Dorj et al., 2017; Harmsen and Koenderink, 2009;
Liu et al., 2017; Maldonado and Barbosa, 2016; Mussadiq et al., 2015;
Aich and Stavness, 2017; Dobrescu et al., 2017; Pound et al., 2017).
However, our case is different as we need to infer the number of seeds
–that are hidden– from the pod shape.

Convolutional Neural Networks (CNNs) have proven to be very ef-
fective at solving vision problems in a wide range of fields and they
have been one of key elements of the success of Deep Learning (LeCun
et al., 2015). In the context of agricultural applications, recent years
have witnessed a growing tendency to replace classic techniques with
deep learning algorithms for a variety of vision tasks (Grinblat et al.,
2016; Ding and Taylor, 2016; Sladojevic et al., 2016; Lu et al., 2017;
Tang et al., 2017). Even a typical phenotyping problem, counting
leaves, has been tackled with these techniques (Ubbens and Stavness,
2017). Recently, a complete survey of Deep Learning in agriculture has
been published (Kamilaris and Prenafeta-Boldú, 2018). According to
this survey our application is new and will fall into the area of plant
phenology recognition where only two paper were surveyed (Yalcin,
2017; Namin et al., 2017).

The advantages of the Deep Learning approach for vision tasks are
twofold: there is no need to carefully design handcrafted features ex-
tractors for the problem at hand, as CNNs can learn specialized features
extractors from raw data, and when provided with enough data, CNNs
generally reach higher accuracies than classic techniques (LeCun et al.,
2015). An important drawback of neural networks is the high number
of hyperparameters associated to the model architecture design (such as
number of layer, units per layer, etc) and the training algorithm
(learning rate, momentum) as well. Finding appropriate values may feel
like a challenging task to an inexperienced user. However, current deep
learning libraries offer default values for hyperparameters which are
good starting points for optimal search.

The aim of this paper is to tackle the problem of counting the SPP
number for soybean pods with a Deep Learning approach based on
standard Convolutional Neural Networks and to compare the results
with a classic approach based on a set of tailored features extracted
specifically for this problem and a SVM classifier. We also offer an
extensive study of how hyperparameters selection impacts on the CNN’s
performance on this task. This paper also aims to contribute to col-
lecting evidence in favor of the widespread use of Deep Learning for
agricultural applications even for users not specialized in these tools.

2. Background

2.1. Classic approach

The classic procedure in machine vision is to define and extract
appropriate features for the problem at hand and then train a classifier
(e.g. an SVM with Gaussian kernel) in the corresponding representation
space (as done for example in (Wu et al., 2007; Pydipati et al., 2006;
Golzarian and Frick, 2011)). Part of our team firstly tackled this pro-
blem with such a classic strategy.

In a preliminary stage, three state-of-the-art classic classification
methods were implemented, namely SVM, Random Forest (RF)
(Breiman, 2001) and Penalized Discriminant Analysis (PDA) (Hastie
et al., 1995). The cross-validation error for the three methods were
found to be comparable, with a slight difference in favor of SVM. For
this reason, in this paper SVM was chosen as the classic classification
method for comparison purposes against CNN.

Regarding the handcrafted features, many geometrical (Umbaugh,
2005) and shape (Hu, 1962) features were considered at first. Lately,
the addition of a 25-bin histogram of the profile of the pod shown to
improve classification. Alternatively, an ad hoc method of ellipse fitting
of beans inside the pod was designed, but it did not show any im-
provement.

2.2. Convolutional neural networks

CNNs, introduced by LeCun et al. (1990), have an architecture
specially designed to process images. Its topology leads to a huge re-
duction in the number of free trainable parameters in comparison to a
standard (fully connected) artificial neural network. This is due to its
sparse neural connectivity (restricted to small receptive fields) and to
the sharing of filter values along image locations exploiting transla-
tional invariance. In the following we briefly describe CNN’s archi-
tecture mainly with the purpose of defining the hyperparameters con-
sidered in this work. For a more detailed description of this kind of
models, we refer the reader to (LeCun et al., 2010) and references
therein.

Fig. 4 depicts a diagram of the considered CNN model, inspired on
the VGG architecture (Simonyan and Zisserman, 2014). Each layer is
composed of three transforms. First, there is a convolution operation
between the input image and a filter bank. Each filter has a bounded
size associated to a small receptive field in the input image, typically
3×3 or 5×5 filter sizes are considered. For each filter in the bank, the
convolution produces a feature map. Together with the convolution
operation a subsampling step may be introduced. This replaces the
standard average or max pooling operation by simply setting an stride
larger than 1 in the convolution transform (Springenberg et al., 2014).
A subsampling of factor 2 in each dimension of the feature map retains
1/4 of the output values (those with even indexes). This subsampling is
usually accompanied with a duplication of the number of feature maps
with respect to previous convolutional layers.

Second, a Batch Normalization (BN) transform (Ioffe and Christian,
2015) is applied after each convolution. This transform standardizes
convolution output by fixing maps mean and deviation to 0 and 1 re-
spectively over small batches of samples. It then applies a learnable
gain and bias to each feature map. This layer has a beneficial regular-
ization effect that has been verified in numerous machine vision ap-
plications (Vinyals et al., 2015; Radford et al., 2015; He et al., 2016),
making it a standard tool.

Finally, the third transform is an element-wise nonlinear function
applied to all feature maps. We use in all cases the Leaky ReLU func-
tion2 (Maas et al., 2013), which is widely used to enhance the back-
propagation signal.

1 In order to further illustrate the difficulty of the classification task, we have in-
tentionally included in Fig. 2 some hard samples together with more common cases. 2

=LReLU x x x( ) max(0.01 , ).
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