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A B S T R A C T

In order to improve the accuracy and effectiveness of dissolved oxygen (DO) prediction, a combined forecasting
model based on ensemble empirical mode decomposition (EEMD) and least squares support vector machine
(LSSVM) is proposed. Firstly, the DO time series are decomposed into a group of relatively stable subsequences
by ensemble empirical mode decomposition to reduce mutual influences among diverse trend information.
Secondly, the decomposed subsequence is reconstructed by phase space reconstruction (PSR), and then, an
LSSVM optimized by the Bayesian evidence framework prediction model of each sub-sequence is established.
Lastly, we use Bp neural network to reconstruct the predicted values of each component to obtain the predicted
value of the original DO sequence. This paper used the single point iterative method to achieve multi-step
prediction in order to obtain forecasting results for 24 h into the future. EEMD-LSSVM is tested and compared
with other algorithms in the Jiangsu Liyang huangjiadang special aquaculture farms. The experimental results
show that the proposed combination prediction model of EEMD-LSSVM has a better prediction effect than WD-
LSSVM, EEMD-ELM and standard LSSVM methods. The relative mean absolute percentage error (MAPE), root
mean square error (RMSE), mean absolute error (MAE) and the largest error (emax) for the EEMD-LSSVM model
are 0.0261, 0.2161, 0.1721 and 0.0767, respectively. Consequently, it is clear that the EEMD-LSSVM model has
high forecast accuracy and generalization ability.

1. Introduction

Information technology has become an important tool for the sus-
tainable development of modern aquaculture. In all aspects of aqua-
culture, such as intelligent feeding, disease monitoring and diagnosis,
water quality monitoring, forecasting and early warning, information
technology is widely used. Dissolved oxygen (DO) is one of the key
water quality parameters for water products, which reflects changes in
water quality in aquaculture. The water quality of an aquaculture pond
has a direct impact on the growth of aquatic animals and product
quality (Hu et al., 2015). For more than 16 h in a continuous 24-h
period, the dissolved oxygen value must be greater than 5mg/L, and for
the remaining time, it should not be less than 3mg/L. When dissolved
oxygen is less than 3mg/L, it will have a great impact on the feeding,
digestion and health of fish. It is necessary to make a 24 h, or even
longer, prediction of dissolved oxygen, which is convenient for man-
agers in making early decisions. Therefore, accurate prediction of dis-
solved oxygen has very important economic value and practical sig-
nificance.

In recent years, many studies have focused on dissolved oxygen
(DO) content prediction and have obtained significant results. Liu et al.
(2013) studied the prediction of DO content based on least squares
support vector regression optimized by improved particle swarm opti-
mization and later proposed a hybrid dissolved oxygen content fore-
casting model based on wavelet analysis (WA) and CPSO-LSSVR (Liu
et al., 2014). Huan and Liu (2016) designed an approach using K-means
clustering and ELM neural network to predict DO. The artificial neural
network (ANN) and hybrid wavelet-ANN (WANN) models were used to
predict thirty-minute dissolved oxygen levels in the River Calder
(Ravansalar et al., 2015). Ahmed (2014, 2015) used artificial neural
networks to forecast the DO and applied the adaptive neurofuzzy in-
ference system to estimate the DO of the Surma River. Khan and Valeo,
2017 used a possibility theory-based fuzzy neural network to predict
DO. Chen et al. (2016) presented a three-dimensional prediction model
for DO content based on the PSO-BPANN algorithm coupled with Kri-
ging Interpolation. The study of Arya and Zhang (2015) proposed an
ARMA prediction model based on wavelet decomposition, which was
used to predict changes in the DO and temperature in the Stillaguamish
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River.
However, several previous studies using a single model for DO

forecasting usually directly applied the original DO data to construct
forecasting models. Because of the nonlinearity and nonstationarity of
DO data, it is difficult to describe the tendency of DO and to improve
prediction accuracy. In order to establish a suitable and effective pre-
diction model, the original data characteristics of DO need to be con-
sidered and analyzed. Therefore, empirical mode decomposition
(EMD), as a special adaptive and direct data processing method de-
veloped for dealing with nonlinear and nonstationary data, is used to
decompose the original DO data into a sum of intrinsic mode function
(IMF) components and one residue, which can improve the accuracy of
forecasting. The EMD technique, however, also suffers from a number
of drawbacks such as mode mixing and end effects. Zhaohua and Huang
(2009) proposed an improved decomposition technique, which is an
ensemble empirical mode decomposition (EEMD) technique, to alle-
viate the mode-mixing problem. This method can effectively reflect the
essence of the original signal and has been quickly adopted in many
fields. For example, Wang et al. (2014) used a combined independent
component analysis (ICA) and EEMD to separate the fault signal from a
mixing signal. Xu et al. (2016) proposed ensemble empirical mode
decomposition and an improved artificial bee colony algorithm model
for prediction of pH values. Yu et al. (2015) presented a cayenne pepper
height forecasting method based on ensemble empirical mode decom-
position (EEMD) and the Elman neural network (ELM).

The rest of this paper is organized as follows: Section 2 describes
EEMD, LSSVM, and Bayesian evidence framework methodologies.
Section 3 presents the detailed modeling steps of the EEMD-LSSVM in a
Bayesian evidence framework model. Section 4 gives the actual data
and compares the performance of the proposed model with other pre-
diction models. Section 5 discusses the conclusions of this article.

2. Materials and methodology

2.1. Study area data source

This paper selected the Liyang huangjiadang special aquaculture
farms in Changzhou city, Jiangsu province, China, as a test area. The
experiment pond was approximately 1.53 km2 in size, and the water
level averaged 1.5–2.5 m. The pond has a pond circulating water
system, equipped with a dissolved oxygen sensor, oxygen pump, wire-
less monitoring system and other modern fishery equipment.
Aquaculture environment data were obtained from the aquaculture
remote wireless monitoring system, and the system collected data every
hour online. It is convenient for us to obtain DO data from the remote
Internet system management platform. The system topology structure
diagram is shown in Fig. 1

2.2. EMD and EEMD

Empirical mode decomposition (EMD), first proposed by Huang
et al. (1998), is a novel empirical analysis tool used for processing
nonlinear and nonstationary datasets. The main function of EMD is to
decompose DO time series into a set of several simple intrinsic mode
function (IMF) components and one residue.

Let x(t) be a given original time series. The detailed steps of EMD
calculation can then be described as follows (Zhao et al., 2017).

Step 1. Determine all the maximum and minimum values for the
entire time series x(t).

Step 2. Calculate the upper envelope, which can be derived by
connecting all the local maxima using a cubic spline line. The lower
envelope can also be obtained with this method. Calculate the mean of
the upper and lower envelopes, referred to as n1(t). Calculate the first
difference z1(t) between the original series data x1(t) and n1(t):

= −z t x t n t( ) ( ) ( )1 1 1 (1)

Step 3. Check whether z1(t) satisfies the requirements of IMF. If z1(t)
does not satisfy an IMF, replace x(t) with z1(t) and repeat Step 2 until
the termination criterion is satisfied. The termination criterion is as
follows:
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where l is the length of the zi(t), η is the terminated parameter, and i is
the number of iterations. η is assumed to be in the range of 0.2–0.3 (Yu
et al., 2015). This paper uses η=0.2.

After repeating step 2 k times, we obtain the difference value zk(t)
that satisfies the requirements of IMF. Let q1(t)= zk(t).

However, if z1(t) is an IMF, then z1(t) is denoted as the first IMF
q1(t) and x(t) is replaced with the residue c1(t):

= −c t x t q t( ) ( ) ( )1 1 (3)

Step 4. c1(t) is replaced by x(t), and Steps 1–3 are repeated. We can
then obtain the rest

of the IMF and a trend of r(t). After the EMD calculation, the ori-
ginal time

series data x(t) can be decomposed into the sum of all the IMF
components and a residue as follows:
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EEMD effectively uses noise characteristics to reduce mode aliasing.
The EEMD signal decomposition steps are as follows:

Step 1. Add a white noise sequence, which should be subject to a

Fig. 1. The system topology structure diagram.
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