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A B S T R A C T

Internal-body (core) and surface temperatures of livestock are important information that indicate heat stress
status and comfort of animals. Previous studies focused on developing mechanistic and empirical models to
predict these temperatures. Mechanistic models based on bioenergetics of animals often require parameters that
may be difficult to obtain (e.g., thickness of internal tissues). Empirical models, on the other hand, are data-
based and often assume linear relationships between predictor (e.g., air temperature) and response (e.g., in-
ternal-body temperature) variables although, from the theory of bioenergetics, the relationship between the
predictor and the response variables is non-linear. One alternative to consider non-linearity is to use machine
learning algorithms to predict physiological temperatures. Unlike mechanistic models, machine learning algo-
rithms do not depend on biophysical parameters, and, unlike linear empirical models, machine learning algo-
rithms automatically select the predictor variables and find non-linear functions between predictor and response
variables. In this paper, we tested four different machine learning algorithms to predict rectal (Tr), skin-surface
(Ts), and hair-coat surface (Th) temperatures of piglets based on environmental data. From the four algorithms
considered, deep neural networks provided the best prediction for Tr with an error of 0.36%, gradient boosted
machines provided the best prediction for Ts with an error of 0.62%, and random forests provided the best pre-
dictions for Th with an error of 1.35%. These three algorithms were robust for a wide range of inputs. The fourth
algorithm, generalized linear regression, predicted at higher errors and was not robust for a wide range of inputs.
This study supports the use of machine learning algorithms (specifically deep neural networks, gradient boosted
machines, and random forests) to predict physiological temperature responses of piglets.

1. Introduction

One of the current challenges in agriculture is to increase food
production to feed the world’s growing population while considering
environmental responsibilities and the comfort of the biological object
(livestock; Hunter et al., 2017). In animal production, the challenge is
in developing precision livestock farming techniques (Van Hertem
et al., 2017; Wathes et al., 2008) to increase animal comfort and pro-
duction. These techniques (Guarino et al., 2017) are focused on con-
tinuous monitoring of animal health, comfort, and production in-
dicators, such as internal-body and skin-surface temperature. These
temperatures indicate the health status and production levels of animals
(Da Silva and Maia, 2013; Soerensen and Pedersen, 2015), as well as
their heat stress level, estimated to cost the swine industry $300 million
each year (St-Pierre et al., 2003).

Heat stress is a major issue that decreases animal welfare
(Silanikove, 2000), production (Nienaber et al., 1999), reproduction
(Wolfenson et al., 2000), and growth potential (Collin et al., 2001). To
cope with heat stress, pigs rely on behavioral (Vasdal et al., 2009) and
physiological (Brown-Brandl et al., 2001, 2014; Robertshaw, 2006)
responses. Because of the importance of monitoring heat stress of pigs
(Shao and Xin, 2008), and the difficulty of measuring the necessary
parameters that indicate heat stress (McCafferty et al., 2015), two
classical approaches are used to estimate heat stress of animals: (1)
mechanistic modelling, and (2) empirical modelling.

Mechanistic models are based on the biophysical understanding of
conservation of energy, momentum, and mass in live animals (Collier
and Gebremedhin, 2015; DeShazer, 2009). Using conservation equa-
tions, a governing equation for the problem is formulated and solved
analytically or numerically. The limitations of analytical and numerical
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models are the assumption that internal and/or superficial tempera-
tures are known, or a simple mathematical relationship exists between
them, and/or some of the parameters are also difficult to obtain (e.g.,
thickness of internal tissues, etc.). Furthermore, mechanistic models
reveal that the relationship between environmental and physiological
responses are non-linear (Hensley et al., 2013; Milan and Gebremedhin,
2016a,b; McArthur, 1981).

Empirical models are data-based and usually assume a linear re-
lationship between predictor variables (e.g., air temperature) and the
response variable (e.g., internal-body temperature). These relationships
are chosen by the researcher and has a considerable impact on the
accuracy of the model (Mostaço et al., 2015; Pathak et al., 2009;
Ramirez, 2017; Soerensen and Pedersen, 2015).

A third approach that is receiving increased attention from swine
researchers are machine learning and computer vision algorithms
(Kamilaris and Prenafeta-Boldú, 2018). Recent applications include
monitoring animal behavior (Cross et al., in press; Lao et al., 2016;
Nasirahmadi et al., 2017; Shao and Xin, 2008), and weight (Kashiha
et al., 2014; Shi et al., 2016; Wongsriworaphon et al., 2015). In this
paper, we propose the use of machine learning algorithms to predict
internal-body temperature, skin-surface temperature, and hair-coat
surface temperature of piglets from environmental variables. The ad-
vantage of this approach compared to mechanistic models is that it does
not rely on biophysical parameters. The advantage of this approach
compared to empirical models is that it automatically finds a non-linear
function from the data, removing the subjectivity from the researcher
choosing the relationship between predictor and response variables. To
the best of our knowledge, this is the first study that applies machine
learning algorithms to predict physiological temperatures of swine.

2. Materials and methods

2.1. Experimental measurements

Animal use and research protocol were approved by the Animal
Care and Use Committee from São Paulo State University (FAPESP Proc.
17.519/14). The experiment was conducted in Jaboticabal, São Paulo,
Brazil (21°15′40′′ South Latitude and 595m elevation) for five con-
secutive days. Ten 5-days-old piglets (weight= 3.76 ± 0.41 kg,
mean ± SEM) from the commercial lineage “Large White” were ran-
domly selected from the same farrowing. The farrowing was not pro-
vided with supplemental heat. The selected piglets were randomly se-
parated into 5 groups (2 piglets in each group) and managed inside a
brooder (1.0× 1.0×1.0m3) from 3 a.m. to 8 a.m. Physiological
measurements were performed hourly and started one hour after the
piglets were inside the brooder (i.e., from 4 a.m. to 8 a.m.) to allow for
adaptation to the environment. Four of the five groups were provided
with supplemental heat (lamps) with intensities of 60W, 100W, 160W,
or 200W. The fifth group (control) was not provided with supplemental
heat.

Skin-surface temperature (Ts, °C) at the upper leg of the animal was
measured with a skin- temperature probe (MLT422/AL, ADInstruments,
accuracy ± 0.2 °C) and rectal temperature (Tr, °C) was measured with
a rectal temperature probe (MLT1403, ADInstruments,
accuracy ± 0.2 °C). These probes were connected to thermistor pods
(ML309, ADInstruments), and the pods were connected to a data ac-
quisition system (PL3516/P, PowerLab 16/35 and LabChart Pro,
ADInstruments) that recorded data every second for approximately
5min. Hair-coat-surface temperature (Th, °C) at the upper leg was
measured with an infrared thermometer (Model 568, Fluke,
accuracy ± 1 °C). Air temperature (Ta, °C) and relative humidity (RH,
%) inside the brooder were measured every minute (HOBO U12 Temp/
RH, Onset, accuracy ± 0.35 °C and ± 2.5%). Black globe temperature
(Tg, °C) inside the brooder was measured using a 15-cm dia. black globe
installed 10 cm above the ground (thermocouple TMC20-HD, data-
logger U12-013, accuracy ± 0.35 °C, Onset).

2.2. Model development

2.2.1. Data processing
The experiment was designed to provide 200 data points. Each in-

dividual data point contained the time of measurement (in hours), in-
tensity of the supplemental heat, Ta, RH, Tg, Tr, Ts, and Th. Time of
measurement, intensity of supplemental heat, Ta, and Tg were used as
predictors of Tr, Ts, and Th. RH was not used as a predictor variable
because 22% of the data was lost due to sensor failure. Further technical
problems led to a reduction in the number of collected datapoints from
200 to 173. Correlations of the variables, mean and standard error of
the mean were calculated. The univariate number of the outliers in the
dataset was calculated using the z-score method at 2.5 standard de-
viations above or below the mean (Cousineau and Chartier, 2010).

The dataset was divided into training and testing datasets (Hastie
et al., 2003). The training dataset was used to develop the machine
learning models and the testing dataset was used to evaluate the pre-
dictive performance of the models. The training dataset consisted of
130 data points (75% of the dataset) and the testing dataset consisted of
43 points (25% of the dataset). The testing dataset was first obtained
using stratified random sampling for each combination of time of
measurement/intensity of supplemental heat (strata). This approach
ensured that the testing dataset contained at least two data points from
each stratum. Mean values were calculated for each strata of the dataset
(yielding 20 data points) to determine the mean percentage error of
each model for every stratum.

2.2.2. Overview of machine learning models
The machine learning algorithms used in this study were general-

ized linear regression model with elastic net regularization (GLM; Zou
and Hastie, 2005), random forests (RF; Breiman, 2001), gradient
boosted machines (GBM; Natekin and Knoll, 2013), and deep neural
networks (feedforward neural networks) with the ReLU activation
function (DNN; Goodfellow et al., 2016). Each algorithm has hy-
perparameters that influence the model learned from the data.

GLM is ordinary linear regression with penalty terms in the L1 (sum
of magnitudes) and L2 (sum of squares) norms of the linear regression
coefficients. The penalties shrink irrelevant regression coefficients and
limit the impact of collinearity between the predictor variables (Zou
and Hastie, 2005). The objective function of the GLM model is de-
scribed as
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where β β, 0 are regression coefficients, the summation represents
the squared residual errors, xi is the predictor variable from the ith row
of data, yi is the predicted variable from the ith row of data, λ is the
severity of penalty applied, and α distributes the penalty between
L1(∥ ∥β 1) and squared L2(∥ ∥β 2

2) norms of the regression coefficients. The
hyperparameters are λ and α.

The RF and GBM models rely on decision trees, which are simple
predictive models that stratify the input data space into output areas.
The output-area prediction of decision trees is the mean of the response
variables from the training dataset that fall in that output area (Fig. 1).
For RF, several decision trees are developed independently from dif-
ferent subsets of the training dataset as well as from the different pre-
dictor variables. The prediction of the RF is the average of the predic-
tions from all decision trees. The hyperparameters for RF are number of
decision trees, minimum number of observations in a leaf, number of
variables used to develop each split in a decision tree, and the max-
imum depth of the decision trees. For the GBM model, decision trees are
developed sequentially, where each new decision tree is designed to
improve on the predictive performance of the previous decision trees.
The hyperparameters of the GBM are nearly the same as the hy-
perparameters for the RF, except GBM uses all predictor variables in a
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