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A B S T R A C T

Bayesian networks were used to predict yield functions from three commercial oil palm estates. The networks
were trained using a range of environmental, agronomic and management data routinely collected during
plantation management. The Bayesian networks predicted fruit yield (FFB), average weight of fruit bunches
(ABW) and average bunch number per hectare (BUNCH_HA). Comparing the predictions of most probable yield
against observed data showed the Bayesian networks were highly accurate, with r2 values between 0.6 and 0.9.
Predictions for attaining specific yield targets exceeded 75% accuracy for the FFB, 85% for the BUNCH_HA, and
90% for the ABW function. Supplementary analysis compared the precision of the Bayesian networks with
artificial neural networks (ANNs), and demonstrated that the Bayesian networks gave equivalent or superior
accuracy for every test. The utility of the networks were demonstrated by predicting the probability of achieving
above average yield functions for each block across the three estates using a set of hypothetical rainfall and
fertiliser input scenarios during the year prior to harvest. For the majority of blocks, the probability of exceeding
the yield target depended on the level of fertiliser and rainfall inputs received, indicating that production from
these blocks is greatly influenced by prior rainfall and fertilizer. However, some blocks in favourable areas
showed a very high probability of exceeding the mean yields at all rainfall and fertiliser inputs, while a number
of other blocks showed a consistently low probability of achieving the same productivity; production from these
blocks will be resistant to the effects of historic rainfall and fertiliser inputs. The ability of Bayesian networks to
represent future yield expectations will greatly assist managers under pressure to improve the economic and
environmental sustainability of plantations. The demonstration that machine learning can extract important
insight from complex datasets will have broad application in the analysis of big data collected from oil palm as
well as other agricultural industries.

1. Introduction

The global oil palm industry has grown rapidly over recently, with
production increasing from 17.64 million tonnes in 1996/97 up to
69.77 million tonnes in 2016/17 (USDA, 2018). However, the oil palm
industry is facing mounting environmental, economic and political
pressures which endanger future sustainability (Carlson et al., 2013).
The industry’s on-going resilience and profitability will depend on the
ability of estate managers to make strategic and process orientated
adaptations to management (Cook et al., 2014).

Plantation managers are under intense pressure to make rapid

management decisions about many issues, from personnel to strategy;
from area to input. Decisions are frequently made under duress and
based on intuition, which often gives a sub-optimal outcome.
Furthermore, managers might attach false confidence to their intuition,
leading to impulsive decisions that are untested against data. The po-
tential and cumulative risks are grave.

Decision support systems can assist managers by summarising data
driven analysis and providing objective and rational perspectives of
complex production systems. For example, PALMSIM is a computer
simulation model that has been developed for oil palm (Hoffmann et al.,
2014). However, yield predictions from this model are based solely
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upon current solar radiation, water availability and tree age, and so are
unable to represent the variation relating to environmental or man-
agement parameters. The development of a comprehensive computer
model for oil palm presents many challenges. First, parameter quanti-
fication is costly and time consuming. Second, it can be difficult to
generalise between contrasting geographic and environmental loca-
tions. Third, the output is typically a simple single predicted yield
arising from specified environmental and management variables.

Recently, “big data” has become an increasingly common paradigm
across many domains, including agricultural research (Kamilaris et al.,
2017). Big data typically represents extremely large data collections
characterised by the 5 Vs: Volume, Velocity, Variety, Veracity and
Valorisation (Chi et al., 2016; Kamilaris et al., 2017), which describe
the quantity of data; the time window over which the data is relevant;
the diversity of data types and sources; the quality, accuracy and re-
liability of the data; and the ability to propagate knowledge and in-
novation.

Efficient exploitation of the emerging agricultural big data resources
has been estimated to offer an annual global benefit of up to $20 billion,
yet, despite this potential, analysis of big data in agriculture has lagged
behind other industries (Kamilaris and Preafeta-Boldu, 2018). The raw
data itself presents little if any economic value, but must first be
transformed into high-value knowledge and wisdom using appropriate
analytical tools aligned with the Data-Information-Knowledge-Wisdom
hierarchy (Rowley, 2007; Lokers et al., 2018) which can in turn be used
to construct actionable management (Antle et al., 2017; Morota et al.,
2018).

Traditional experimental paradigms and statistical methods are not
well adapted to the analysis of agricultural big data (Coble et al., 2018).
Fishers’s statistical methods and associated experimental designs are
predicated on taking a small sample from a large population, whereas
big data will often include very large samples and might at times in-
clude the entire population. Furthermore, big data is often associated
with high levels of noise, heterogeneity, spurious correlations and in-
cidental endogeneity.

Machine learning presents alternative options for the analysis of big
data (Coble et al., 2018). Such algorithms mimic human intelligence by
first learning to recognise structures and patterns within sometimes
complex datasets and then to use the acquired model, which is akin to
human experience, to make predictions about future events. A major
advantage of machine learning algorithms for the analysis of big data is
that they do not rely on applying user specified models to the data, but
instead discern their own rules for the system being scrutinised.

The analysis of agricultural big data using machine learning is be-
coming increasingly common and recent examples include the predic-
tion of crop type from satellite data, crop yields, irrigation require-
ments, pest and disease attacks, and weed identification (Pantazi et al.,
2016; Kussul et al., 2017; Kamilaris and Preafeta-Boldu, 2018).

Commonly used machine learning tools include Bayesian networks
and artificial neural networks (ANNs). A Bayesian network is a machine
learning tool that utilises a directed acyclic graph and probability dis-
tributions to define and quantify the stochastic dependencies between
variables (Pearl, 1988; Koller and Friedman, 2009). Commonly, Baye-
sian networks can be used to learn a model which describes a complex
system. The derived model can act as a substitute for expert human
knowledge, and can be used to infer the value of an unknown variable
from a given set of known variables (Friedman and Koller, 2003).

In contrast, ANNS are inspired by the physiology of the brain
(Haykin, 2007), and use a network of interconnected artificial in silico
neurones that learn to recognize patterns and relationships among input
data, and then use the resulting data model to predict outcomes from
new and previously unprocessed input data.

The oil palm industry has embraced the big data paradigm for many
years, with estates routinely measuring an enormous array of en-
vironmental, agronomic and ecophysiological parameters (Oberthür
et al., 2015). The data bank stored by estates presents a valuable yet

largely untapped resource to support the development of sustainable
palm oil management strategies.

Oil palm research has developed various machine learning tools to
assist the industry including, for example, genomic selection on plant
breeding programs (Kwong et al., 2017), the identification of yield
recording errors (Pushparani et al., 2018), and fruit ripeness (Bensaeed
et al., 2014). Despite these applications of machine learning, and de-
spite the availability of plantation level big data resources, the potential
for machine learning resources to predict oil palm yields from com-
mercial big data collections has yet to be explored.

Bayesian networks have great potential for the analysis of big data
collected from commercial oil palm estates because: (1) Bayesian net-
works can integrate both categorical and continuous data, so optimising
the full data set (Scutari, 2010); (2) the constructed network shows
dependencies between parameters that both validate the learnt network
by cross-referencing with pre-existing expert knowledge, or construct
new hypothesis through the detection of undiscovered relationships
between parameters; (3) Bayesian networks can handle incomplete
datasets efficiently (Bressan et al., 2009) and most significantly; (4) the
output from a Bayesian network is the level of probability or “belief”
that an outcome will occur; managers could easily comprehend and
implement probability framed predictions into their estate manage-
ment. The probability orientated output from Bayesian networks is
feature that may be particularly important to support learning pro-
cesses of estate managers (Tenenbaum, 1999).

In this study, we explore how Bayesian networks can be trained
from data sets collected through routine management from commercial
oil palm estates, and compared their performance against results from
ANNs trained on the same data. A subsequent proof-concept-study
predicted yield functions from a range of simple hypothetical situations
to demonstrate how trained Bayesian networks could assist estate
managers formally represent expectations of future estate productivity
under contrasting scenarios.

Table 1
Summary of parameters used in the three Bayesian networks.

Parameter name Description

FFB Fresh fruit yield in year of harvest (t·ha−1)
FFB.1 Fresh fruit yield in the year prior to the year of harvest

(t·ha−1)
FFB.2 Fresh fruit yield in the year two years prior to the harvest

(t·ha−1)
ABW Average weight of fruit bunches in the year of harvest (kg)
ABW.1 Average weight of fruit bunches in the year prior to the year

of harvest (kg)
ABW.2 Average weight of fruit bunches in the year two years prior

to the harvest (kg)
ESTATE Identity of the estate from which the data is collected
RAINFALL Total rainfall in the year of harvest (mm)
RAINFALL.1 Total rainfall in the year prior to the year of harvest (mm)
RAINFALL.2 Total rainfall two years prior to the year of harvest (mm)
SUM_NPKMg_IN Total fertiliser application in the year of harvest (kg·ha−1)
SUM_NPKMg_IN.1 Total fertiliser application in the year prior to the year of

harvest (kg·ha−1)
SUM_NPKMg_IN.2 Total fertiliser application in the year two years prior to the

harvest (kg·ha−1)
SMG Soil management group: classes A, B, C, D and F
TREEAGE Age of tree in the year of harvest (years)
BUNCH_HA Density of bunches in the year of harvest (bunches·ha−1)
BUNCH_HA.1 Density of bunches in the year prior to the year of harvest

(bunches·ha−1)
BUNCH_HA.2 Density of bunches in the year two years prior to the harvest

(bunches·ha−1)
N.17.1 Mean foliar nitrogen content in the 17th frond in the year

prior to harvest (% dry matter)
K.17.1 Mean foliar potassium content in the 17th frond in the year

prior to harvest (% dry matter)
P.17.1 Mean foliar phosphorous content in the 17th frond in the

year prior to harvest (% dry matter)
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