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A B S T R A C T

Support Vector Machine (SVM) algorithms are developed for weed-crop discrimination and their accuracies are
compared with a conventional data-aggregation method based on the evaluation of discrete Normalised
Difference Vegetation Indices (NDVIs) at two different wavelengths. A testbed is especially built to collect the
spectral reflectance properties of corn (as a crop) and silver beet (as a weed) at 635 nm, 685 nm, and 785 nm, at a
speed of 7.2 km/h. Results show that the use of the Gaussian-kernel SVM method, in conjunction with either raw
reflected intensities or NDVI values as inputs, provides better discrimination accuracy than that attained using
the discrete NDVI-based aggregation algorithm. Experimental results carried out in laboratory conditions de-
monstrate that the developed Gaussian SVM algorithms can classify corn and silver beet with corn/silver-beet
discrimination accuracies of 97%, whereas the maximum accuracy attained using the conventional NDVI-based
method does not exceed 70%.

1. Introduction

Weeds are one of the most challenging problems for farmers,
threatening their ability to produce good-quality food cost-effectively
(Oerke, 2006). Relying only on traditional chemical weed control not
only imposes high financial pressure on farmers, but also has negative
impacts on the environment, creating herbicide-resistant weeds and
polluted soils (Owen, 2016; Ramsden et al., 2017; Strassemeyer et al.,
2017). Automating weed control can play an important role in
achieving viable weed management (LóPez-Granados, 2011; Slaughter
et al., 2008). Most of the research carried out on automated weed-plant
discrimination is based on the use of image recognition techniques
(Aitkenhead et al., 2003; Burgos-Artizzu et al., 2011; Cope et al., 2012;
Eddy et al., 2014; Hamuda et al., 2017). While image recognition by
using typical cameras provide relatively high discrimination accuracies
(> 90%), camera images are typically captured at visible wavelengths
in the rage 300–700 nm. However, some of the key plant characteristics
used in plant discrimination fall outside the visible range (Filella and
Penuelas, 1994).

Plant discrimination based on the use of portable spectrometers for
measuring the spectral reflectance properties of the illuminated vege-
tation has been investigated by different research groups (de Castro
et al., 2012; Deng et al., 2014; Fletcher and Reddy, 2016). Raymond
et al. (2005) reported a new prototype capable of automatically de-
tecting green plants (i.e., green-from-brown) and applying pesticides in

real time. However, this system was incapable of discriminating weeds
from crops (green-from-green). Askraba et al. (2016) reported real-time
green-from-green discrimination sensors based on the use of a quad
bike in conjunction with a spectral reflectance sensor. While this sensor
demonstrated the concept of green-from-green discrimination, its ac-
curacy was limited.

SVM is a machine learning technique that is typically used for object
classification (Colgan et al., 2012; Guyon et al., 2002; Hernault et al.,
2010; Ma and Guo, 2014; Wang et al., 2011). This technique has been
proposed, but not implemented, as a promising tool for weed-plant
discrimination (Lee et al., 2010).

In this paper, we propose the use of Support Vector Machines
(SVMs) in conjunction with spectral reflectance measurements for the
development of a high-accuracy plant discrimination sensor. In all ex-
periments a weed sensor engine developed by Askraba et al. (2016) is
used to collect the intensities of the laser beams reflected off vegetation
and soil at three different wavelengths, and the Normalised Difference
Vegetation Indices (NDVIs) are then calculated from these measured
intensities. Two different investigations are carried out, namely: (1) a
comparison between the accuracies of the weed detection methods
based on the machine-learning-based Support Vector Machine (SVM)
method and the conventional method of dual-NDVI-based plant dis-
crimination (Symonds et al., 2015); (2) a comparison between the
discrimination accuracies of the SVM method using as input the raw
reflected laser beam intensities and the NDVI values.
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2. Methodology

2.1. System description

2.1.1. Plant discrimination unit
Fig. 1 shows the layout of the spectral-reflectance-based Plant Dis-

crimination Unit (PDU) that was used in the experiments to collect the
intensities of the laser beams reflected off the investigated plants and
background. The PDU was developed by Askraba et al. (Askraba et al.,
2011; Symonds et al., 2015). PDU is photonic-based spectral reflectance
system performing noncontact spectral reflectance measurements of
plants and soil which is fully described by Arie (Paap, 2014).

The real-time Plant Discrimination Unit (PDU) shown in Fig. 1
comprised two sets of three-laser modules, two symmetric coated op-
tical cavities, plus a linear array of high-speed photo detectors (a line-
scan camera) and a motherboard housing six sub-modules including a
laser driver, a central processing unit, a temperature controller, a board
for a nozzle activator, a driver for the line-scan camera, and analogue
and digital power supplies. The PDU unit was robustly boxed, using a
rigid container and a light-weight dust shield, to overcome tough op-
erational conditions including vibrations, shocks, and high tempera-
tures (Symonds et al., 2015).

2.1.2. Vegetation illumination
Fig. 2 shows the schematic of the PDU layout and shows how laser

beams illuminate the vegetation.

2.1.3. Beam generation
Each laser module used three 1mm collimated laser beam sources

including two red (635 nm and 685 nm) lasers and one near-infrared
(785 nm). Two thin-film beam combiners were used in order to com-
bine the laser beams, as described by Askraba, 2013. All lasers were
aligned so that the beams emitted from the laser module were collinear,
overlapped, and had identical polarisation directions.

The collimated laser beams emitted from each laser module were
launched into an optical cavity. An optical cavity was used to generate
multiple beams from a laser source in each side. The cavity was tilted by
23 degrees to cover a span of 490mm. The top (back) of the optical
cavity was coated with a reflective surface and the bottom (front) of the
cavity was coated with a non-uniform transmissive surface (Askraba,
2013), so that all the beams emitted from the cavities had almost the
same intensities (Symonds et al., 2015).

The embedded controller of the PDU employed a dsPIC33F micro-
controller that controlled the lasers and image sensor and carried out
the data processing needed to determine the spectral properties of the
plants and the background soil. The distance between two adjacent
laser beams was 15mm and the gap between the two optical cavities
was 34mm. The total number of laser beams emerging from both

cavities at one time was 30 beams (15 beams for each cavity). Each
laser was driven by a constant current driver that controlled the power
of each laser diode. The optical power for the 635 nm, 685 nm, and
785 nm lasers at the entrance to the optical cavity was set to 20mW,
25mW, and 15mW, respectively. The line scan sensor recorded the
intensities of the reflected beams. The line scan sensor was a
Hamamatsu S9227-03 sensor, comprising an array of 512 photodiodes
of size 250×10 µm. The analogue output voltage was converted to
using a 10-bit analogue to digital converter (ADC).

2.1.4. Physical layout of the experiment
All the experimental data were collected using the custom-designed

testing facility (referred herein as the ‘testbed’) shown in Fig. 3, which
was built and installed at the Electron Science Research Institute (ESRI)
by Festo, Western Australia.1

The testbed shown in Fig. 3 enabled data to be collected at speeds of
up to 20 km/h with submillimetre accuracy. The PDU unit was placed
(looking straight down (i.e. 90° from horizontal)) on a trolley which
carried the PDU unit and moved it via a stepper motor. A laptop
communicated via a router to control the stepper motor. Communica-
tion with the PDU was via Wi-Fi using the router, which enabled the
speed of the PDU to be controlled, as illustrated in Fig. 3.

2.2. Data description

2.2.1. Data collection
Corn (Zea mays) leaves and broad silver beet (Beta vulgaris subsp)

leaves were used in the experiments to evaluate the performance of the
developed algorithms. Data were selected representative to broad/
narrow leaf combinations for the experiment. All data were captured on
6 March 2017, three weeks after germination for the corn leaves and
four weeks after germination for the silver beet leaves. For each ex-
perimental run, three plants (grown in pots) were individually placed
along the central area of the tray pots. In order to be able to generalise
the results, training plants and testing plants were kept separately. The
PDU was moved to capture the spectral reflectance data for each set of
the three plants at a spatial resolution of 1mm along the traveling
speed of the PDU. The total number of scanned lines per run was 550.
Data augmentation was achieved by randomly rotating the plants
through ten different orientations.

2.2.2. NDVI calculation
The spatial profile of the detected beams was approximately

Gaussian, and each beam occupied around 13 pixels, illustrated in
Fig. 4 as peak region. Peak detection was performed to calculate the

Fig. 1. A picture of the PDU developed for
plant discrimination. The PDU has two sets
of three-laser modules, two symmetric op-
tical cavities, a line scan camera (which is
an array of high-speed linear photo detec-
tors), plus a motherboard comprising six
daughter-boards, including a central pro-
cessing unit, a laser driver, a temperature
controller, a line scan camera driver, a spray
nozzle activator, and analogue and digital
power supplies.

1 Festo: https://www.festo.com/cms/en-au_au/index.htm
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