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A B S T R A C T

The availability of combine yield monitors since the early 1990′s means that long time-series (10+ years) of
yield data are now available in many arable production systems. Despite this, yield data and maps are still under-
exploited and under-valued by professionals in the agricultural sector. These historical data need to be better
considered and analyzed because they are the only audited means by which growers and practitioners can assess
the spatio-temporal yield response within a field. When done, time-series of yield maps are mostly processed by
classification-based algorithms to generate spatial and temporal yield stability maps or to provide yield or
management classes. This work details an alternate segmentation-based methodology to first generate and then
characterize contiguous within-field yield zones from historical yield data. It operates on the yield data rather
than interpolated yield maps. A seeded region growing algorithm is proposed that enables both the specification
of seeds and zone segmentation in a multivariate (multi-temporal yield) attribute space. Novel metrics to assess
the yield zoning are proposed that are derived from textural image analysis. The zoning algorithm and metrics
were applied to two fields with long time-series (6+ years) of yield data in combinable crops. The two case
studies showed that the proposed zone-based approach was effective in delimitating relevant within-field yield
zones. The generated zones had differing temporal yield responses between neighbouring zones that were of
agronomic significant and interest to the production systems. As this is a first attempt to apply a segmentation
algorithm to yield data, areas for future development applications are also proposed.

1. Introduction

Yield monitors mounted on combine harvesters have been available
since the early 1990′s. However, yield data still have difficulties in
being a decisive component of the decision-making process in precision
agriculture studies. In terms of the utility of yield data, multiple issues
have been reported by the scientific community. First of all, it is ac-
knowledged that the yield temporal variability is often stronger than
the yield spatial variability, which can hinder analyses over short and
long-time periods (Blackmore et al., 2003; Bramley and Hamilton,
2004; Eghball and Power, 1995; Lamb et al., 1997). This temporal
variability is essentially due to non-stable factors, such as climate pat-
terns or the type of crops being grown each year (Basso et al., 2012).
Multiple authors have stated that the number of years of yield data
available to conduct yield temporal analyses was critical (Bakhsh et al.,
2000; Kitchen et al., 2005) and some have even tried to propose a
minimum number of years necessary to obtain reliable results (Ping and
Dobermann, 2005). Secondly, it is clear that the spatial yield pattern

results from an interaction of management, climate and soil conditions
within a cropping season, which means that it is not possible to derive
variable-rate application maps directly for a year n by solely relying on
yield data in year n− 1. On top of that, yield data often come with a
large number of defective observations resulting from the pass of the
combine harvester inside the fields. Some of these errors are widely
reported in the literature, e.g. flow delay, filling and emptying times,
abrupt speed changes or unknown cutting width when entering the
crops (Arslan and Colvin, 2002; Sudduth and Drummond, 2007). These
errors, if not accounted for, can influence agronomical decisions over
the fields (Griffin et al., 2008).

However, from a precision agriculture standpoint, these high-re-
solution yield data are a very valuable source of information that would
be aberrant not to consider (Florin et al., 2009). Yield spatial patterns
are a valuable piece of information to better characterize the sources of
spatial variability across the fields. Growers are interested to know
about the mean yield spatial and temporal patterns over their fields so
they can make informed and reliable management decisions. It has been
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shown that, despite a strong temporal variability, it was often possible
to detect consistent yield spatial patterns across years (Kitchen et al.,
2005; Taylor et al., 2007). Be aware that some patterns were found
consistent even under different crops and varying climate conditions.
Furthermore, yield spatial patterns can deliver relevant information
with respect to soil characteristics within the field or can help depict the
influence of other external factors, such as management practices and
weather conditions (Diker et al., 2004). For instance, Taylor et al.
(2007) showed that, in specific portions of their field study, crop ro-
tation management in previous years originated variations in yield
spatial patterns. Other authors have found that high-yielding areas in
dry years could, at the same time, be low-yielding areas in wet years
which could give critical information with respect to within-field soil
characteristics (Colvin et al., 1997; Sudduth et al., 1997; Taylor et al.,
2007). Another strong advantage of these yield datasets is their acces-
sibility. Indeed, in most cases, harvest has to be made which means that
these data can be collected yearly once growers have invested in yield
monitors.

The delineation of management zones or management units has
long been a subject of interest in precision agriculture because it pro-
vides growers with a simple representation of their field. Such zones are
defined as spatially contiguous areas over which specific management
decisions are to be considered. More than often, management zones are
found fragmented in space. This originates from a confusion between
the concepts of management classes and management zones (Pedroso
et al., 2010). In fact, management classes gather all the management
zones over which a specific management decision is to be considered.
Authors mostly use classification-based techniques, mostly k-means
clustering and its fuzzy variant, the fuzzy c-means algorithm (Li et al.,
2007; Moral et al., 2010) to delineate these management units. Some
others have also proposed some post-processing methods to overcome
the fragmentation issue (Ping and Dobermann, 2003). However, as non-
spatial algorithms, classification-based methods do not seem to be the
most relevant approaches to delineate spatially contiguous areas. One
solution could be to make use of object-oriented methodologies from
the image processing domain, which aim at delineating objects inside
an image (Leroux et al., 2017; Pedroso et al., 2010; Roudier et al.,
2008).

Despite the availability of yield data, spatio-temporal yield pattern
analysis is not widely done, and when done, is typically applied in an
ad-hoc or qualitative manner. The industry is missing effective and
easily implemented approaches for spatio-temporal yield pattern ana-
lysis. The major contribution of this work is to propose a new metho-
dology to analyze historical yield data so that growers and agronomic
advisors can better understand the spatio-temporal yield variability in
their fields. It must be clear that that the objective of this study is only
to look information contained within yield data. It is not, as is typically
done with management units, an approach to integrate and simplify
crop and environmental variables. In the first instance, the method
utilizes a novel multi-dimensional segmentation algorithm that can be
applied directly to yield data to define within-field yield zones. The
method is therefore not dependent on map production or co-location of
information from disparate years. To assess the magnitude and the
temporal stability of the yield response within the yield zones, novel
metrics adapted from co-occurrence matrix and image textural analyses
are then introduced. The algorithm and metrics are derived and then
applied to two case studies from arable production systems in France
and the UK. The applicability of this novel approach is then discussed
including the ability to deliver the processing within a simplified fra-
mework that is applicable to non-scientific end-users. Finally, the
questions and concerns requiring further work are discussed in the last
section.

2. Material and methods

2.1. Study sites

The study was conducted on a 20-ha field in England near Amble,
Northumberland (WGS84 datum: E: −1.62, N: 55.37) and on a 31-ha
field in the north of France near Evreux (WGS84 datum: E: 0.78, N:
48.95). Both fields are cropped in a wheat (Triticum aestivum) and ca-
nola (Brassica napus) rotation and exhibit a relatively strong yield
spatial structure. For the English field, wheat yield data were acquired
for six years between 2004 and 2015 with a Case combine harvester
operating a 10-m cutting front. For the French field, eight years of yield
mapping were available spanning the 2003–2011 period. Over the
years, the field was mostly harvested with a Claas combine using a 6-m
front.

2.2. Pre-processing multi-year yield data

Yield data were first cleaned to remove technical errors commonly
reported in the literature, e.g. speed changes, unknown cutting width
when entering the crop, filling and emptying times and abnormal yield
values among others (Arslan and Colvin, 2002; Sudduth and
Drummond, 2007). To compare yield data from multiple years with
possible significant temporal variations, yield observations were stan-
dardized for each year m with a mean of zero and a variance of one (Eq.
(1)):
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where ∼Y i( )m is the ith scaled and centered yield observation in year m,
Y i( )m is the ith yield observation in year m, Ym is the mean yield in year
m and σm is the yield standard deviation in year m.

Following a methodology proposed by Blackmore et al. (2003) and
Marques da Silva (2006), a grid composed of 20×20m pixels, and
whose orientation followed that of the harvested rows, was super-
imposed on the yield data. For each pixel of the grid, yield values
within the pixel were first averaged by year so as to obtain one yield
value for each pixel and each year. The objective was to make sure that
each year had the same influence in each pixel even if the number of
observations falling into each pixel was different from year to year.
Empty pixels in specific years due to missing yield observations were
given the mean yield value over the years in the same pixel.

2.3. Delineating within-field yield zones

2.3.1. General description of the algorithm
The objective is to delineate within-field yield zones using a time

series of yield data. Within-field yield zones were derived from a seeded
region growing algorithm (Adams and Bischof, 1994; Mehnert and
Jackway, 1997). This procedure, arising from the image processing
domain, starts by selecting a set S of k observations [S1, S2, …, Sk],
referred to as the seeds, from which zones are grown. Once the seeds
have been chosen, the remaining observations inside the field, i.e. the
non-seeds, are recursively associated to an existing seed, given simi-
larity measures between observations. As a consequence, this process
expands and grows the zones from the selected seeds. The growing
algorithm stops when all the observations have been associated to a
zone. Such a procedure has already been applied in the precision
agriculture domain but solely with regard to one single agronomic
variable (Leroux et al., 2017; Pedroso et al., 2010; Zane et al., 2013).
Here, the objective is to extend the procedure to a multi-dimensional
case for which there is a need to account for several yield data at the
same time. Note that the proposed methodology presents some simi-
larities with that of Leroux et al. (2017).
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