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A B S T R A C T

The use of management zones (MZs) is an approach to precision agriculture that considers spatially contiguous
subregions of the field, within which effects on the crop due to differences in soil, topography, and other abiotic
factors are expected to be nearly uniform. Delimiting regions within the fields with similar yield potential and
yield-limiting factors can lead for field management optimization. Regardless of the method used to delimit these
zones, patches or isolated pixels generally appear. To smooth the MZs and improve their contiguity, a compu-
tational rectification function was implemented, allowing the analysis of 8 (3×3 mask) or 24 (5×5 mask)
neighboring pixels using the statistical median and mode, to evaluate whether each pixel in the map should be
reassigned to a different MZ. After being interpolated and normalized, sample data from three experimental
fields were used to create clusters through fuzzy c-means algorithm, generating maps with two, three, four, and
five classes. Then, the rectification function was applied five times on each map, which eliminated isolated pixels
and virtually all patches, smoothing the boundaries between classes. The smoothness index showed higher
variation in the first rectification as well as with an increase in the number of classes. The best performance was
obtained with the 5× 5 mask regardless of the statistical method used (median or mode). Our results show that
these techniques are an effective way to increase the contiguity and smoothness of MZs, thereby improving their
effectiveness, and are suitable for application in precision agriculture.

1. Introduction

The variability of nutrients in the soil directly affects crop yield; it
may be related to factors such as climate, topography, organic matter,
vegetation, geological processes, and soil management practices
(Mallarino and Wittry, 2004). This influence occurs on different scales,
complicating soil management and reducing the effectiveness of ferti-
lizers if applied on a uniform scale (Mohammadi, 2002). As a result,
different fertilization requirements may be needed for the same area.
Since crop yield is influenced by soil characteristics, the study and
understanding of the sources of variation is paramount to identify ap-
propriate site-specific management (Rodrigues et al., 2016; Mzuku
et al., 2005).

Spatial variability in crops is determined through monitoring and
measurements, making it possible to create a plan for the correction of
any deficiencies, particularly when site-specific management is in-
tended, in order to improve soil quality, and, consequently, increase

production (Davidson, 2014; Mzuku et al., 2005). Timlin et al. (1998)
showed that topography and related factors such as soil depth and or-
ganic matter have a large effect on the variation of crop yields and can
be used to identify management zones.

Normally, soil samples are analyzed to determine the levels of nu-
trients in the soil. The sampling should be dense enough to allow the
determination of the variability of nutrients in the soil so that fertilizers
can be used profitably and in an environmentally sustainable manner
(Ferguson and Hergert, 2009; Franzen et al., 2002).

A management zone (MZ) is a subregion of a field that expresses a
functionally homogeneous combination of yield-limiting factors for
which a uniform rate of a specific crop input is appropriate (Bobryk
et al., 2016; Doerge, 2000; Moral et al., 2010; Moshia et al., 2014).
After delineation of the MZs, the number of samples needed to delineate
the field soil variability can be reduced to one composite sample per
zone, a technique suggested by Wollenhaupt et al. (1994) whereby
subsamples are collected around georeferenced points, ensuring
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superior evaluation of nutrients in the area. This approach to sampling
is likely to reduce laboratory costs while maintaining the level of re-
liability (Ferguson and Hergert, 2009; Mallarino and Wittry, 2004), and
it has been shown to improve the efficiency of nutrient use, maintaining
or increasing the yield and potentially reducing the overloading of
nutrients into the environment (Khosla et al., 2002; Moshia et al.,
2014). Many studies related to sampling density have been performed
(Journel and Huijbregts, 1978; Demattê et al., 2014; Wollenhaupt et al.,
1994; Franzen et al., 2002; Ferguson and Hergert, 2009; Doerge, 2000),
resulting in a suggested minimum density of 1 sample ha−1 (Ferguson
and Hergert, 2009) to 2.5 sample ha−1 (Journel and Huijbregts, 1978;
Doerge, 2000), which should be composed of at least eight individual
samples (Wollenhaupt et al. (1994)). It is reported in the literature that
the use of MZs is commercially viable, but there is a need for further
research to improve delineation techniques (Nawar et al., 2017).

Several kinds of data can be used to delineate MZs; however, it is
advantageous to use a set of multivariate data attributes that do not
vary significantly over time (topography, electrical conductivity, phy-
sical properties of the soil) and that are correlated with crop yield, thus
producing more stable MZs (Buttafuoco et al., 2010; Doerge, 2000).
Some researchers, such as Taylor et al. (2007), Guastaferro et al.
(2010), and Nawar et al. (2017), have also included crop yield as a
variable in the delineation of MZs using clustering methods. According
to Kitchen et al. (2005), the identification of areas of similar pro-
ductivity potential called “productivity zones” may be useful when
some key management decisions depend on reliable estimates of ex-
pected yield, such as the application of N fertilizer rate or seedling rate.
In precision agriculture (PA), the terms “management zone” and
“management class” are often used as synonyms. However, a manage-
ment class is the area to which a particular treatment may be applied,
whereas a management zone is a spatially contiguous area to which a
particular treatment may be applied. Thus, a management class may
consist of numerous zones, whereas a management zone can correspond
to only one management class (Taylor et al., 2007).

Several approaches have been developed to delineate MZs; these are
often classified as empirical or clustering according to the technique
used (Córdoba et al., 2016; Guastaferro et al., 2010). The clustering
approach is the most typical, and it has been used to obtain satisfactory
results by many researchers (Arno et al., 2011; Moral et al., 2010; Saleh
and Belal, 2014; Tagarakis et al., 2013). However, regardless of the
procedure used to generate the MZs, small patches generally arise
within a class. In order to resolve this issue, Lowrance (2014) created
the EZZone software package, which smooths zones by merging small
polygons having an area smaller than a certain threshold with larger
polygons of different zones. Other researchers, such as Pramanik et al.
(2013), have proposed that fields be merged by assigning weights to
pixels, that is, by analyzing the asymmetry of neighboring pixels. To
eliminate isolated cells or patches, Xiang et al. (2007) used post-clas-
sification majority filtering (mode). According to Lark (1998), Ping and
Dobermann (2003), and Córdoba et al. (2016), the use of spatial filters
applied to the results of such classification is also recommended to
improve zone contiguity. Nonetheless, none of these studies compared
the mode and median statistics or used the smoothness index or Cohen’s
kappa coefficient to evaluate the quality of the smoothing process.

The objective of the present study was to develop and apply com-
putational techniques based on mode and median statistics to rectify
and thus smooth MZs. The expectation was that this would eliminate
the patches, making the zones more contiguous and thus more viable
operationally.

2. Materials and methods

2.1. Datasets

Data collection was based on an irregular sampling grid of three
experimental fields located in rural areas of the state of Paraná, Brazil

(Fig. 1) (Field A: 25°24′28′′S, 54°00′17′′ W; Field B: 25°26′49′′S,
54°04′59′′W; Field C: 25°06′32′′S, 53°49′55′′W). These fields have been
cultivated under a no-tillage system for over 10 years, rotating soybean
(Glycine max L.) with corn (Zea mays L.). Fields A, B, and C measured
9.9 ha, 19.8 ha, and 15.5 ha, respectively. They included 42
(4.2 sample ha−1), 58 (2.9 sample ha−1), and 40 (2.6 sample ha−1)
sampling points, respectively, set by means of irregular grids. This
density of sampling points is sufficient to identify the variability of the
attributes since it is greater than 2.5 sample ha−1 (Journel and
Huijbregts, 1978; Doerge, 2000). Only stable attributes, that is, those
recommended for studying the delineation of MZs (Doerge, 2000), were
collected and analyzed (Table 1).

Locations of the sampling points were obtained by Global
Navigation Satellite System (GNSS) receiver (Juno SB, Trimble
Navigation Limited, Sunnyvale, CA, USA), and the elevations were
obtained using a total station (GPT-7505, Topcon Corporation, Tokyo,
Japan). Soil penetration resistance (SPR) measurements were taken
around each point delineated on the sampling grid, using an electronic
penetrometer (PenetroLOG, Falker, Porto Alegre, Brazil). The means of
the measurements were subsequently calculated to represent the sam-
pling value average at depths of 0–0.1, 0.1–0.2, and 0.2–0.3m. At the
same locations, eight subsamples of soil were collected at a depth of
0–0.2m within a radius of 3m from the point determined on the grid
(adapted from Wollenhaupt et al., 1994). Subsequently, the samples
were forwarded for laboratory analysis and to obtain data on soil tex-
ture (clay, silt, and sand).

Soybean and corn yield were determined at the same points at
which the soil samples were taken, the harvest and threshing of which
occurred manually in an area of 0.9 m2. Subsequently, the yield values
were calculated and were converted to a 13% moisture content. The
yield data were normalized by amplitude range (Eq. (1)) with the ob-
jective of removing seasonal and crop variability, transforming the
value obtained at each sampling point in each of the five crop cycles
(Pij) used in this study into a single normalized value (Pij_Amplitude).

=
−∼

P
P x

Aij
ij j

j
Amplitude

(1)

where Pij_Amplitude is the yield normalized by the amplitude at point i in
year j, Pij is the yield at point i in year j, ∼xj is the median yield in year j,
and Aj is the amplitude range of the sample value in year j.

2.2. Variable selection

To assess the spatial correlations among the analyzed attributes,
Moran’s bivariate spatial autocorrelation statistic (Czaplewski and
Reich, 1993) was used, creating the spatial correlation matrix, which
allows the determination of those attributes that influence yield posi-
tively or negatively and whether each variable is correlated spatially
(spatial autocorrelation). Then, the variables to be used in the clus-
tering process were chosen by using the approach proposed by Bazzi
et al. (2013): (1) elimination of variables with non-significant spatial
dependence at a 5% probability level, (2) elimination of variables
having no correlation with the dependent variable, and (3) elimination
of redundant variables (those that are correlated with each other),
giving preference to the maintenance of variables having a higher
correlation with the dependent variable.

2.3. Interpolation of the selected variables

Inverse distance weighting (IDW) and kriging (KRI) are the inter-
polation methods most commonly used in PA. They are differentiated
by the way in which the weights are attributed to the sample values,
which may influence the estimated values (Reza et al., 2010; Souza
et al., 2016) as well as the smoothness of the delineated MZs. However,
regardless of the interpolation method, there could be many isolated
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