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In this paper, we apply the Markov Chain Monte Carlo method, within the Bayesian framework, for the
estimation of parameters appearing in the heat conduction model in metals under the condition of thermal
non-equilibrium between electrons and lattice. Such non-equilibrium can be experimentally observed in a
time scale of up to few picoseconds, during the heating of thin metal films with laser pulses of the order of
femtoseconds. Simulated measurements containing random errors are used for the solution of the inverse
problem. Results are presented for the simultaneous estimation of the electron–phonon coupling factor, the
thermal conductivity and the heat capacity of the electron gas.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The thermal nonequilibrium between electrons and lattice is an
important phenomenon in the study of heat transfer in thin metal
films subjected to fast laser pulses. The photon energy of the laser
pulse absorbed by the electrons gives rise to a hot free-electron gas,
which diffuses through themetal and heats up the lattice by electron–
phonon collisions. For laser pulses of duration longer than the
electron–phonon thermalization time, the electrons have enough
time to establish equilibrium with the lattice, so that they have the
same temperature. On the other hand, for laser pulses of the order of
femtoseconds and in a time scale of up to few picoseconds, the
variation of the lattice temperature is small compared to the electron
temperature rise and thermal non-equilibrium can be experimentally
observed [1–19].

For the current range of laser pulse durations used for the fast
heating of thin metal films, the transient nonequilibrium temper-
atures of electrons, Te, and lattice, Tl, can be described by the
following parabolic model, which is written for a one dimensional
problem [1–19]:

Ce Teð Þ ∂Te x; tð Þ
∂t =

∂
∂x K

∂Te
∂x

� �
− G Te−Tlð Þ + Q x; tð Þ ð1aÞ

Cl
∂Tl x; tð Þ

∂t = G Te−Tlð Þ ð1bÞ

In Eqs. (1a) and (1b), Cl and Ce are the lattice and the electron
volumetric heat capacity, respectively, K is the thermal conductivity of
the electron gas, Q(x,t) is the source term resulting from the laser
heating and G is the electron–phonon coupling factor, which controls
heat transferbetweenelectronsand lattice.Diffusioncanbeneglected in
Eq. (1b), since heat is mainly carried by free electrons in metals during
thenonequilibriumstate duration. Theelectron–phononcoupling factor
can be theoretically predicted, but inverse analysis techniques, such as
the Levenberg–Marquardt method, can also be used for its estimation
[8]. The thermal conductivity, the lattice volumetric heat capacity, and
the electron–phonon coupling factor can be assumed as constant. For
electron temperatures as those observed in experiments such as the one
under analysis, the electron heat capacity is known to vary linearly with
temperature in the form [8]:

Ce Teð Þ = γTe: ð2Þ

In this communication we revisit the work presented in Ref. [8],
which involved the estimation of the electron–phonon coupling
factor, by extending the inverse analysis for the estimation of other
parameters appearing in the two-temperature model given by Eqs.
(1a), (1b), and (2). Another novelty of this communication is the
estimation of these parameters within the Bayesian framework, by
using the Markov Chain Monte Carlo (MCMC) method [20–24]. The
solution of the inverse problem within the Bayesian framework is
recast in the form of statistical inference from the posterior
probability density, which is the conditional probability distribution
of the unknown parameters given the measurements. The conditional
probability of the measurements given the unknown parameters,
which incorporates the related uncertainties, is called the likelihood.
The information for the unknowns that reflects all the uncertainty
of the parameters, without the information conveyed by the
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measurements, is called the prior model. The formal mechanism to
combine the new information (measurements) with the previously
available information (prior) is Bayes' theorem [20–25].

2. Inverse problem

One dimensional geometry is considered for the inverse problem
examined here. The metal film is assumed to be initially at uniform
temperature and in thermal equilibrium, that is,

Tl t0ð Þ = Te t0ð Þ = T0; ð3Þ

where t0 is the initial time. Heat losses at the film surfaces are
neglected due to the short duration of the related experiment, that is,

∂Te
∂x = 0 at x = 0 and at x = L = thickness of the medium: ð4a;bÞ

The source term Q(x,t) resultant from the laser heating has the
form [8]:

Q x; tð Þ = 1−Rð ÞIαe−αxe− t = tpð Þ2 ð5Þ
where I is the maximum laser power flux, R is the surface reflectivity
and tp is the laser pulse duration. The absorption coefficient α is
determined from the relation

α =
4πn′
λ

ð6Þ

where λ is the wavelength of the heating laser and n′ is the extinction
coefficient, i.e., the coefficient of the imaginary part of the complex
refractive index at the same wavelength.

For the direct problem, all the parameters appearing in the
formulation of the physical problem under examination are consid-
ered known and the electron and lattice temperature fields can then
be obtained. The solution of the direct problem in this work was
obtained by finite differences. The calculations were started at time
t0=−3tp, when the heat source term is four orders of magnitude

smaller than its maximum value, so that its effects can be neglected
for previous times. For the calculation of the source term, the optical
properties of the metal were assumed independent of light intensity,
laser pulse duration and temperature.

The inverse problem considered here deals with the estimation of
parameters appearing in the two-temperature model, given by
Eqs. (1a)–(6), by using transient measurements of the temperature
of the electron gas at the surface heated by the laser pulse. Such
measurements can be obtained with a pump–probe setup. In such an
arrangement, a laser beam (pump) is used to heat the sample, while
another laser of much smaller intensity (probe) is used to measure
changes in the metal's reflectivity [11–16]. The sample reflectivity
changes with variations in the electron and lattice temperatures.
However, in a time scale of up to few picoseconds the effects due to
variations of the lattice temperature can be neglected, since the
electron temperature rise is much larger than that of the lattice.
Therefore, the measured data is taken in the form of the normalized
temperature variation, which is given by:

Yi =
ΔR tið Þ
ΔR max

ð7Þ

where ΔR(ti)=R(ti)−R(t0), for i=1,…, I, is the surface reflectivity
variation at time ti and ΔRmax indicates the maximum reflectivity
variation. We note that changes in the sample transmissivity can also
be associated to changes in the electron temperature [11–16].

The solution of the inverse problem within the Bayesian
framework is based on the following principles [20]: 1. All variables
appearing in the mathematical formulation are modeled as random
variables; 2. The randomness describes the degree of information
concerning their realizations; 3. The degree of information concerning
these values is coded in probability distributions; and 4. The solution
of the inverse problem is the posterior probability distribution, from
which distribution point estimates and other statistics are computed.

Bayes' theorem is stated as [20–25]:

πposterior Pð Þ = π P jYð Þ = π Pð Þπ Y jPð Þ
π Yð Þ ð8Þ

where P the vector of parameters in the two-temperature formula-
tion, YT=(Y1, Y2,…, YI) is the vector containing the measured
temperature variations, πposterior(P) is the posterior probability
density, π(P) is the prior density, π(Y|P) is the likelihood function
and π(Y) is the marginal probability density of the measurements,
which plays the role of a normalizing constant.

Point and confidence estimates from the posterior distribution
typically require numerical integration. If the posterior probability
distribution does not allow an analytical treatment, Markov Chain
Monte Carlo (MCMC) methods are used to draw samples of all
possible parameters, so that inference on the posterior probability is
obtained through inference on the samples. A simple and robust
implementation of the MCMC method is given by the Metropolis–
Hastings algorithm [20–25]. The implementation of the Metropolis–
Hastings algorithm starts with the selection of a proposal distribu-
tion p(P*,Pt− 1), which is used to draw a new candidate state P*,
given the current state Pt−1 of the Markov chain. Once the jumping
distribution has been selected, the Metropolis–Hastings sampling
algorithm can be implemented by repeating the following steps
[20–25]:

1. Sample a Candidate Point P* from a proposal distribution p(P*,Pt−1).
2. Calculate the acceptance factor:

H = min 1;
π P� jYð Þp Pt−1

;P�� �
π Pt−1 jY� �

p P�;Pt−1� �
2
4

3
5 ð9Þ

Nomenclature

C volumetric heat capacity
G electron phonon coupling factor
I number of measurements
K thermal conductivity of the electron gas
L thickness of the medium
N number of parameters
P vector of parameters
Q heat source term resulting from the laser heating
R reflectivity
T temperature
Y measurements, Eq. (7)

Greeks
γ coefficient for the linear variation of the electron heat

capacity, Eq. (2)
σ standard deviation

Subscripts
e electron gas
l lattice
meas measurements
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