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A B S T R A C T

In plants, there are different types of electrical signals involving changes in membrane potentials that could
encode electrical information related to physiological states when plants are stimulated by different environ-
mental conditions. A previous study analyzing traits of the dynamics of whole plant low-voltage electrical
showed, for instance, that some specific frequencies that can be observed on plants growing under undisturbed
conditions disappear after stress-like environments, such as cold, low light and osmotic stimuli. In this paper, we
propose to test different methods of automatic classification in order to identify when different environmental
cues cause specific changes in the electrical signals of plants. In order to verify such hypothesis, we used machine
learning algorithms (Artificial Neural Networks, Convolutional Neural Network, Optimum-Path Forest, k-
Nearest Neighbors and Support Vector Machine) together Interval Arithmetic. The results indicated that Interval
Arithmetic and supervised classifiers are more suitable than deep learning techniques, showing promising results
towards such research area.

1. Introduction

Plants as sessile and modular organisms face the challenge to keep
their stability growing in environments under constant changing (Souza
et al., 2016). Since plants lack a central command to organize the en-
vironmental information gathered in each module (e.g., a branch root
or a leaf), an efficient communication system has evolved in order to
integrate local information (cell-to-cell communication) and to signa-
lize through the plant body (long-distance communication) (Trewavas,
2003; Lüttge, 2012).

Long-distance communication, also referred to as systemic com-
munication, can be triggered by different stimuli, such as biotic ones
(e.g., systemic acquired resistance as a response to pathogens) or by
abiotic stimuli (e.g., water deficit, heat, and salinity). Therefore, the
ultimate goal of these systemic signaling is to activate response me-
chanisms in remote tissues, improving the ability of the whole plant to
prepare its tissues to an upcoming challenge (Gilroy et al., 2014).
Among the signals involved in long-distance communication, ROS (re-
active oxygen species), calcium and electrical signals perform a central
role (Baluska, 2016).

In plants, there are different types of electrical signals, which are

electrical activities involving changes in membrane potential, such as
action potential (AP), variation potential (VP, or slow wave - SW), and
system potential (Davies, 2006; Sukhova et al., 2017). APs are char-
acterized by spike-like changes of the resting membrane potential and,
independent of the stimulus strength, start propagating through the
plant with a defined amplitude and velocity. Like in animals, APs seem
to be all-or-nothing events (Fromm and Spanswick, 1993; Pyatygin
et al., 2008). VPs differ from APs in various ways. VPs do not obey the
all-or-nothing law, they are known as slow wave potentials (SWPs) with
variable shape, amplitude and time frame. Moreover, the signals are
related with the stimulus strength, and last for periods of 10 s up to
30min (Zimmermann and Mithofer, 2013; Vodeneev et al., 2015).
System potentials (SPs), in contrast to APs and VPs, reflect a systemic
self-propagating hyperpolarization of the plasma membrane or depo-
larization of the apoplastic voltage. Like VPs, SPs have a magnitude and
duration that are depended on the stimulus, but they are initiated via
membrane hyperpolarization through the sustained activation of the
proton pump. SPs are dependent on experimental conditions, and then
they may occur under a very specific set of environmental conditions
(Zimmermann and Mithofer, 2013; Choi et al., 2016). Furthermore,
quite often all these signals are mixed altogether, which impairs a
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proper signal analysis (van Bel et al., 2014; Saraiva et al., 2017). Strong
evidences have demonstrated that bioelectrical signals play a central
role in both cell-to-cell and long-distance communication in plants
(Baluska et al., 2006; Zimmermann et al., 2009; van Bel et al., 2014),
also supporting the ability to adjust their phenotypes to different en-
vironmental conditions (Fromm and Lautner, 2007; Gallè et al., 2015;
Rìos-Rojas et al., 2014). For instance, Sukhov et al. (2014) and
Magdalena et al. (2017) have demonstrated the role of electrical signals
in the regulation of photosynthetic responses to different stimuli.

Very recently, Souza et al. (2017) proposed the concept of “plant
electrome” based on the general proposition of “electrome” by De Loof
(De Loof, 2016), describing the totality of the ionic currents in different
scales of plant organization. By measuring low-voltage electrical signal
using eletrophytography (EPG) (Debono, 2013; Souza et al., 2017),
Souza et al. (2017) showed that different environmental stimuli could
change some characteristics of the temporal dynamic of the electrical
signaling, including the level of complexity. It was noticed that some
specific frequencies, which were observed in non-stimulated plants, have
disappeared after stimulation. Moreover, the environmental stimuli
changed the type of color noise of the electrical signals. However, it was
not clear if the different environmental cues (cold, low light, and osmotic
stress) caused distinct effects on the plant signals (Souza et al., 2017).

Therefore, measuring the level of stress in plants is of crucial im-
portance to a better understanding of their working mechanism.
However, automatic plant stress identification by means of machine
learning techniques has been considered recently only. Singh et al.
(2016) presented an overview about machine learning tools and their
applications in the context of biotic and abiotic stress traits classifica-
tion. The main goal of such work is to guide the plant community when
using machine learning techniques in the aforementioned situation.
Two years earlier, Ma et al. (2014b) also considered a similar study, but
in a more general way, and Ma et al. (2014a) employed machine
learning to study stress-responsive transcriptomes in Arabidopsis
thaliana. The experiments highlighted that such tools were able to
outperform standard statistical approaches. Shaik and Ramakrishna
(2014) used machine learning techniques to identify multiple stress
conditions genes for broad resistance in rice, and Behmann et al. (2015)
presented a review of different machine learning techniques applied for
biotic stress identification in precision crop protection.

Chatterjee et al. (2014) established a relationship between the light
stimulus and plant electrical response for different light stimuli in-
tensity considering 19 different plants (17 Zamioculcas zamiifolia and 2
Cucumis sativus plants). The best results were obtained by Nonlinear
Hammerstein-Wiener (NLHW) a good matching over others fitting
methods. Later on, Chatterjee et al. (2015) classified three different
types of stimuli (NaCl, H2SO4 and O3) based on the response of elec-
trical signals of tomatoes and cucumbers. The authors used different
machine learning algorithms (FLDA - Fisher Linear Discriminant Ana-
lysis, QDA - Quadratic Discriminant Analysis, NB - Naive Bayes, and
Mahalanobis Classifier) considering eleven features extracted from the
electrical signal using linear and nonlinear methods. The best result was
around 73.67% of recognition rate.

Chen et al. (2016) applied four classifiers (Template Matching, Ar-
tificial Neural Networks, Support Vector Machines and Deep Belief
Networks) for the recognition of plant stimuli from electrical signals.
The aforementioned work combined a waveform-based feature ex-
tractor and the Principal Component Analysis (PCA) approach, ob-
taining around 96% of recognition rate with Template Matching.

In this paper, we propose to use the concept of plant electrome
(Souza et al., 2017) to automatically identify whether different en-
vironmental cues cause specific changes in the electrical signals of
soybean plants. In order to verify such hypothesis, we considered using
machine learning algorithms and arithmetic intervalar, a branch of
mathematical tools that allows one to extend standard numbers to an
interval representation. Therefore, the main contributions of this paper
are:

• to use the plant electrome data as input for machine learning-based
prediction of plant stress; and

• to employ deep learning techniques for plant stress identification.

The remainder of this paper is organized as follows. Sections 2 and 3
present the theoretical background and methodology used in this paper,
as well as the results obtained using the proposed approach, respec-
tively. Finally, Section 4 states conclusions and future works.

2. Materials and methods

2.1. Data acquisition

All datasets used herein to test the different methods of classifica-
tion are part of the study published by Souza et al. (2017). The data
consist of time series of low-voltage variation ( VΔ in μV ) measured in
soybean plants subjected to different environmental stimuli: cold, low
light and osmotic stress. The protocol of data acquisition was defined by
Saraiva et al. (2017), using a signal amplifier (model MP36, Biopac
Systems, US) inside a grounded Faraday cage. The measurements were
carried out with one reference electrode attached to the grounded
Faraday cage, and two electrodes inserted in the plants operating in a
differential mode, where the instrumental amplifier cuts off the similar
frequencies recorded in both electrodes. The sampling rate was 125 Hz
with a high-pass filter settled to allow pass higher frequencies
(>0.5 Hz), since the objective of that study was investigate the low-
voltage noise that underlies the electrical signals (see more details in
Saraiva et al. (2017)).

2.2. Datasets

The datasets described in the previous section were cropped to
contain features per sample (signals obtained from the plants). Besides
the large number of features, the signal is not so homogenous, therefore
applying classical machine learning methods in the raw data is not
advisable. To overcome this weakness, we applied some concepts of
Arithmetic Intervalar to map raw data into lower-dimensional feature
space.

In our work we consider four different datasets, as follows:

• cold: 67 signals obtained from plants in ideal conditions (without
stress) and 76 signals obtained after cold stress.

• low light: 152 signals obtained in ideal conditions (without stress)
and 118 signals after low light stress.

• osmotic: 123 signals obtained in ideal conditions (without stress)
and 145 signals after osmotic stress.

• all: 342 signals obtained in ideal conditions (without stress), 76
signals after cold stress, 118 signals after low light stress, and 145
signals obtained after osmotic stress.1

Some examples of the signals from each class are depicted in Fig. 1.

2.3. Theoretical background

In this section, we present a brief theoretical background related to
the machine learning and feature mapping techniques based on Interval
Arithmetic used in this work.

2.3.1. Interval Arithmetic
The Interval Arithmetic (IA) was proposed by Moore in the 1960’s,

being the main idea to represent values as a range model instead of

1 This dataset is a merge of the cold, low light and osmotic datasets. The main idea of
this dataset is to verify whether the methods are able to differentiate the stress type or
not.
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