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A B S T R A C T

Enabling automated 3D mapping in forests is an important component of the future development of forest
technology, and has been garnering interest in the scientific community, as can be seen from the many recent
publications. Accordingly, the authors of the present paper propose the use of a Simultaneous Localisation and
Mapping algorithm, called graph-SLAM, to generate local maps of forests. In their study, the 3D data required for
the mapping process were collected using a custom-made, mobile platform equipped with a number of sensors,
including Velodyne VLP-16 LiDAR, a stereo camera, an IMU, and a GPS. The 3D map was generated solely from
laser scans, first by relying on laser odometry and then by improving it with robust graph optimisation after loop
closures, which is the core of the graph-SLAM algorithm. The resulting map, in the form of a 3D point cloud, was
then evaluated in terms of its accuracy and precision. Specifically, the accuracy of the fitted diameter at breast
height (DBH) and the relative distance between the trees were evaluated. The results show that the DBH esti-
mates using the Pratt circle fit method could enable a mean estimation error of approximately 2 cm (7–12%) and
an RMSE of 2.38 cm (9%), whereas for tree positioning accuracy, the mean error was 0.0476m. The authors
conclude that robust SLAM algorithms can support the development of forestry by providing cost-effective and
acceptable quality methods for forest mapping. Moreover, such maps open up the possibility for precision lo-
calisation for forestry vehicles.

1. Introduction

Over the last two decades, technological developments in remote
sensing and computing capabilities have altered the way information
about forests is collected and processed. In Fennoscandia, airborne laser
scanning (ALS), also known as LiDAR scanning, has been the main
approach to developing estate-level forest inventories for over a decade
(Næsset et al., 2004). Given improved sensors and improved image
processing algorithms, both automatically generated photogrammetric
point clouds obtained from aircraft (White et al., 2013; Rahlf et al.,
2015) and unmanned aerial vehicles (UAVs) (Pierzchała et al., 2014;
Puliti et al., 2015) are rapidly gaining widespread use and popularity in
forestry. In general, image processing is carried out offline, either using
robust computer vision algorithms to obtain highly precise and accurate
3D representation of surfaces, or using orthomosaics that are suitable
for mapping (Turner et al., 2012). Additionally, ground-based sensors,
especially terrestrial laser scanning (TLS), have received significant
attention with respect to forest inventories (Liang et al., 2016) over the
past decade. TLS has been used to obtain measurements of a wide array

of forest attributes, including classic inventory variables (Liang et al.,
2016), root systems (Smith et al., 2014), canopy and leaf attributes
(Béland et al., 2011; Ducey et al., 2013), and wildlife habitats (Olsoy
et al., 2014). In many cases, TLS has been shown to measure key
variables such as stem diameter and volume with high accuracy (Liang
et al., 2016) but in some cases there has been poor correlation between
the TLS measurements and observed tree diameters (Ducey et al.,
2013). Although ALS and photogrammetry are gaining widespread
operational use, the application of TLS in forestry is still more popular
in much of the research community than in operational management
and inventorying. For operational use, TLS faces a number of chal-
lenges: is time and labour-intensive to carry, mount, and collect the
data in the forest; it is both time and computationally demanding to
process the data in the office; and there are significant challenges with
non-detection of trees if multiple scans are not performed and stitched
together (Astrup et al., 2014; Liang et al., 2016). Various promising
attempts have been made to overcome these challenges, including
correction for non-detection in single scans (Astrup et al., 2014), au-
tomatic stitching of multiple scans into a single point cloud (Liu et al.,
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2017), and the use of TLS as a ground-truth for ALS applications
(Hauglin et al., 2014). An alternative to traditional TLS applications is
mobile laser scanning (MLS). MLS holds significant promise in forestry
(Holopainen et al., 2014) but its application is still immature and only a
few studies of MLS in forests have been conducted (Miettinen et al.,
2007; Tang et al., 2015; Jaakkola et al., 2010; Rönnholm et al., 2016).
MLS in forest environments faces a number of challenges, foremost
among which is locating the position and movement of the scanner,
given poor global navigation satellite system (GNSS) coverage under
the canopy. Precise localisation under a forest canopy is a complex
problem but, if the problem can be resolved, the method can open up
numerous opportunities in forestry. For example, knowledge of the
position of a forest harvester can allow for the precise geolocation of
harvested trees. Another advantage of precise localisation is the ability
to perform autonomous navigation in a forest (Hellström et al., 2006).
One potential solution to the problem of localisation in forests is the use
of simultaneous localisation and mapping (SLAM) algorithms (Siciliano
and Khatib, 2008), which have been developed in the mobile robotics
community.

Mapping and localisation are important components of advanced
autonomous navigation systems for mobile robots. A map is required in
order to perform any type of path planning algorithms, in order for a
robot to navigate to its goal position. Maps are also required for loca-
lisation, with the latter usually defined with respect to the generated
map frame of reference (as opposed to a global reference, such as with
GNSS). The SLAM paradigm rests on Bayes filtering, a well-known
probabilistic inference approach that tries to fuse different sources of
information (odometry, measurements, and motion commands) in an
optimal or near-optimal manner. Most importantly, the approach takes
into account the various uncertainties (noise) from every source. A
common type of sensor used to obtain such measurements is a camera.
These rich sensors allow the extraction of robust natural visual land-
marks, and the creation of maps consisting of their localisation (either
within a single global frame of reference or with multiple frames of
references). Computer vision algorithms, such as the Oriented FAST and
Rotated BRIEF (ORB) descriptor, have been used to perform both
landmark extraction and matching, culminating in the popular ORB-
SLAM algorithm (Mur-Artal et al., 2015). However, vision algorithms
suffer greatly from the fact that they require a strong matching of these
visual landmarks between pose and have limited depth precision (for
stereo) or none (for monocular systems, as they find geometry up to a
scale factor). By contrast, range sensors such as LiDAR typically have
good depth perception, and the newer models having somewhat higher
bandwidths (over half a million points per second). They allow the
creation of dense map representations, both in 2D and 3D; in other
words, no landmarks are extracted, but rather most of the data are
stored in the map. Such maps can be multilevel surface maps (Triebel
et al., 2006), point clouds, and occupancy grids (Wurm et al., 2010).
Dense maps are interesting not only for robot navigation but also be-
cause they provide more information about the environment, which
makes it attractive to use them a posteriori. In the context of mapping
forests, a prominent example is the use of such dense 3D maps for in-
ventory purposes.

The use of SLAM has been explored previously in forest environ-
ments using 2D LiDAR combined with GPS (Miettinen et al., 2007) as
well as small footprint LiDAR, IMU, and GPS for 2D SLAM (Tang et al.,
2015). The goal of this paper was to test graph-SLAM for mapping of a
forested environment using a 3D LiDAR-equipped UGV. The first sub-
goal was to test the feasibility of creating a 3D point cloud representing
the ground surface and lower stems based on data captured by the UGV.
The second sub-goal was to quantify the accuracy of the extracted
diameters and distances between stems together with development of
support ratio as a function for determining the fraction of stem that is
covered with laser points.

2. Theoretical background

In this section, we describe theoretical background of the SLAM
paradigm, particularly the graph-SLAM concept. This includes the im-
portance of its components such as odometry, loop closure and graph
optimisation. We then present an overview of the technical aspects of
our test, including the mapping platform and its elements as well as the
field area used for testing. Thereafter, we describe the software archi-
tecture and process of map creation. We conclude by specifying the
methods for data extraction which are used for quantifying the accu-
racy of our approach.

2.1. The SLAM concept

Generally speaking, the SLAM problem (in its full-SLAM variant) lies
in estimating the posterior probability of the robot’s complete trajectory
x T1: and the map m of the traversed environment, given all the mea-
surements z T1: and motion commands u T1: , plus an initial position x0
(Grisetti et al., 2010):

p x z u xm( , | , , ).T T T1: 1: 1: 0 (1)

For wheeled vehicles, wheel odometry is often used to compute a
priori pose estimates in lieu of the true command u, before being cor-
rected by exteroceptive sensor measurements z. However, due to the
high probability of wheel slippage in forested environments (Ringdahl
et al., 2012), several alternative strategies to pure odometry have been
proposed. For instance, Nister has reported an extensive study of field
testing of visual odometry in ground vehicle applications (Nistér et al.,
2006).

2.1.1. Graph-SLAM approach
A number of SLAM solutions have been proposed. Earlier ones were

based on Extended Kalman Filters (Bailey et al., 2006), where the state
estimation included the map m of the position of all n landmarks. Due
to the inherent computational complexity of O n( )2 for these Kalman-
based solutions, graph-SLAM approaches have reformulated the SLAM
problem as a graph-related problem. In these approaches, a node re-
presents a particular robot pose xt , while edges encode either odometry
or loop-closure constraints. For either edge, they represent a transfor-
mation matrix (rotation and translation) along with a covariance matrix
encoding the uncertainties associated with these transformations. Once
a graph representing the SLAM problem has been created, a global re-
laxation algorithm is used to optimise the trajectory x T1: , in order to
minimise the non-linear odometry and loop closure constraints and thus
find the most likely map m. Importantly, loop closures explicitly allow
the correction of the accumulated errors during displacements. After
optimisation, corrections are back-propagated along these loops, thus
improving the map. An example of this effect on scan reassembly is
shown in Fig. 1.

3. Material and methods

3.1. Hardware and software setup

To carry out the field tests, we built a dedicated mobile platform on
top of a standard 4 wheeled rover ‘Superdroid 4WD IG52 DB’ (Fig. 3),
which was controlled via a Spektrum DX5e remote controller for
driving of the vehicle in the forest. An aluminium frame bolted on top
of the Superdroid was used to carry the various sensors. At the highest
point of the frame was our main sensor for mapping, a Velodyne VLP-16
LiDAR, used for acquisition of the 3D point clouds. The VLP-16 is a
compact 3D scanner with 16 laser/detector pairs with a 360° horizontal
field of view and a 30° vertical field of view. The laser beams have a
divergence of 3mrad. Full 360° scans of 300,000 points are acquired
with frequencies of 2 Hz. According to the vendor manual, the scanner
operates with a normal accuracy of± 3 cm. The maximum range of the

M. Pierzchała et al. Computers and Electronics in Agriculture 145 (2018) 217–225

218



Download English Version:

https://daneshyari.com/en/article/6539773

Download Persian Version:

https://daneshyari.com/article/6539773

Daneshyari.com

https://daneshyari.com/en/article/6539773
https://daneshyari.com/article/6539773
https://daneshyari.com

