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A B S T R A C T

Due to the changes in the soil, speed and hitch forces, the dynamics of a farm tractor are constantly changing
making the design of an autonomous lane-tracking controller a very complex task. To be able to react to those
changes, this paper presents a new adaptive system based on a self-tuning regulator made up of a recursive least-
squares parameter identification algorithm for the plant combined with a minimum-degree pole placement
(MDPP) method for changing the parameters of a digital RST controller in real time. The MDPP is computed by
solving the Diophantine equation for the desired closed-loop reference model. The results presented show how
the system is able to adapt the control parameters for different speeds and changes in the hitch cornering
stiffness. As future work, this method could also be applied and assessed as a general controller, covering dif-
ferent sizes and different types of steering systems for off-road vehicles.

1. Introduction

With an expected population growth of 30%, some sources
(U.Nations, 2013) forecast an increase of up to 9.6 billion inhabitants
by 2050 and agricultural processes will play a very important role in
feeding this many people. There has been an increasing research in-
terest in agricultural robotics and automation to help improve this
processes and deal with the aforementioned problems. The goal is to
use resources such as machinery and seeds, more efficiently, increasing
yield without having to increase working area. For this, automating off-
road vehicles will help tackle the problem (Moorehead et al., 2012).
One of the main difficulties of automating an off-road vehicle for lane
tracking, is that the dynamics of the system are changing constantly.
This is due to different factors such as soil irregularities, changes in the
driving speed and in the hitch load. This makes the design of a con-
troller a very difficult and time consuming task, since finding a set of
controller parameters for every single situation is nearly impossible.
Therefore, the motivation for this research is to find a more efficient
adaptive controller design that saves time in the implementation and
parameter tuning and is also able to online cover the changes of the
vehicle dynamics.

To deal with the aforementioned difficulties, the most widely used
adaptive controller for lane tracking is a PID gain scheduler. This re-
quires tuning the parameters for the look-up table in all different pos-
sible soils, covering a desired set of velocities with different combina-
tions of front and rear implements. There has been main work
performed in the area of adaptive control of off-road vehicles. For

instance, Bevly and Gartley have done an analysis of a tractor-imple-
ment system (Gartley and Bevly, 2008) and proposed a Model Re-
ference Adaptive System (MRAS) for yaw rate dynamics (Derrick and
Bevly, 2008, 2009; Derrick et al., 2008) combined with gain scheduling
for the lateral position. A non-linear adaptive and predictive controller
is presented in Lenain et al. (2007) and a Fuzzy non-linear adaptive
approach is also to be found in Zhang et al. (2013).

This article presents a new method for controlling the yaw rate
dynamics of an off-road vehicle using a self-tuning regulator. This in-
cludes a minimum-degree pole placement design, based on an online
identification of the vehicle dynamics plus an online computation of the
control parameters. There are different improvements of the method
presented compared with previous related work. One is that a linear
second order system can be used as closed-loop reference model and
due to this, the closed-loop yaw rate will tend to behave the same re-
gardless of the changes in the soil conditions and hitch load. The linear
design also makes the implementation of the controller in an embedded
system less complex and less time consuming. This method will also
need a gain scheduler for the lateral position. However, since the
closed-loop yaw rate will tend to behave the same independently of the
conditions, the look-up table of the lateral position will need fewer sets
of PID parameters. Since the identification is based on a general second
order system, this method can be applied to different steering systems
such as skid-steering, 4W-steering and articulated steering.

The paper is divided in the following way: The second section will
analyze the vehicle dynamics of a tractor with hitch forces, as well as its
poles and zeros to better understand the effects of the changes in the

https://doi.org/10.1016/j.compag.2017.12.027
Received 29 July 2017; Received in revised form 7 November 2017; Accepted 18 December 2017

⁎ Corresponding author.
E-mail address: mail@benjaminfernandez.info (B. Fernandez).

Computers and Electronics in Agriculture 145 (2018) 282–288

0168-1699/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01681699
https://www.elsevier.com/locate/compag
https://doi.org/10.1016/j.compag.2017.12.027
https://doi.org/10.1016/j.compag.2017.12.027
mailto:mail@benjaminfernandez.info
https://doi.org/10.1016/j.compag.2017.12.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2017.12.027&domain=pdf


soil and speed. Section three presents the self-tuning algorithm and the
methodology. The results are presented in section four and finally
section five presents the conclusions and future work.

2. Tractor-implement analysis

To be able to design an appropriate controller, an analysis of the
vehicle dynamics, kinematics and its root-locus has to be performed.
The dynamics and kinematics lead to the equation of motion of the
system and its root-locus tells the response of the system according to
the changes in the velocity, soil and hitch forces. This is essential for
finding the model to be used as a reference for the controller design. If
the dynamics of the reference model are too fast, the closed-loop system
will experience steady state oscillations and even instability and if the
dynamics are too slow, the controller will have a lot of room for im-
provement.

2.1. Bicycle model

Fig. 1 shows a 3-wheeled tractor-implement bicycle model. Here, β ̇
is the yaw rate around the center of gravity, δ is the steering angle and
α α,f r and αh are the front, rear and hitch slip angles, respectively. The
distances from the front and rear axis to the center of gravity are a and
b, respectively, and c is the distance from the rear axis to the hitch.
Lateral forces at front, rear and hitch tires are represented by F F,f r and
Fh, respectively, and by assuming constant longitudinal velocity (Vx),
the longitudinal acceleration is null and the longitudinal forces are
neglected. Therefore, the yaw rate dynamics of the model represented
by Fig. 1, can be expressed by analysing the simplified lateral dynamics
with Eq. (1).
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From the kinematics point of view, and since the system has null
longitudinal acceleration, the lateral acceleration is expressed in Eq.
(2).
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Substituting into Eq. (1) and using the small angle approximation,
we obtain the following simplified equation of motion:
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Assuming constant lateral forces, their relationship to the slip angles
are given in Eq. (4) (Derrick and Bevly, 2009; Gillespie, 1992).
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where C C,α αf r and Cαh are the front, rear and hitch cornering stiffness
and vary depending on the conditions and types of soil. By substituting
(4) into (3), the equation of motion looks as follows:
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Assuming a rigid body, we can say in general that the absolute lineal
velocity at any of its points can be expressed as the lineal velocity of its
center of gravity plus the velocity of the point with respect to its center
of gravity and so wet get Eq. (6), where each velocity is represented by
its x and y coordinates.
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We can also observe from Fig. 1 that
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By substituting Eq. (6) into Eq. (7), applying the small angle ap-
proximation and solving for α, the relationship between the slip angles
and the longitudinal and lateral velocities of the center of gravity is
found.
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Substituting Eq. (8) into Eq. (5) results into
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By introducing the following new variables C C,1 2 and C3 such as
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Eq. (9) can be rewritten into the following state space equation of
motion with state variables Vy and β :̇
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Using Laplace transform, the transfer function between the steering
angle and the yaw rate can be found by solving the following equation:

=
−
−

β s
δ s

C adj s I A B
det s I A

( )̇

( )
· ( · )·

( · ) (12)

where =C [0 1] since it is solved only for β ̇ and so one gets that
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Fig. 1. Tractor-implement bicycle model.
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