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A B S T R A C T

The effect of drying temperature and air velocity on apple quality parameters, such as color difference (CD),
volume ratio (VR) and water absorption capacity (WAC) in convective drying was experimentally studied.
Optimization of drying conditions was carried out in the range of air temperatures from 50 to 70 °C and air
velocity from 0.01 to 6m s−1. A novel algorithm of multi-objective optimization, based on artificial neural
network (ANN), genetic algorithm (GA) and Pareto optimization was developed. Three optimization objectives
included simultaneous minimization of CD, maximization of VR and maximization of WAC. Objective functions
for CD, VR and WAC were developed by using ANN training on the experimental dataset of apple drying at 50,
60 and 70 °C. Pareto optimal set was developed with elitist non-dominated sorting genetic algorithm (NSGA II).
Unique Pareto optimal solution within specified constraints was found at air temperature 65 °C and velocity
1 m s−1. This mode of apple drying resulted in CD=5.24, VR=49.66% and WAC=0.488. Experimental
verification showed that maximum error of modelling did not exceed 3.24%.

1. Introduction

Drying process is one of the well-known methods for preservation of
fruits and vegetables. This process prevents occurrence of unpleasant
changes such as microbial spoilage and enzymatic reaction by removing
water from food products. Moreover, drying decreases the mass and
volume of products, reduces the cost of packaging, storage and trans-
portation (Pasban et al., 2017). Drying with traditional methods is very
time consuming and results in energy wastage and quality deterioration
(Karim and Hawlader, 2005). Theoretical and experimental studies
have been conducted to uncover the actual physical phenomena of heat
and mass transfer during drying. Most of the studies investigated the
drying kinetics at tissue or bulk level (Hazervazifeh et al., 2016; Zarein
et al., 2015). Khan et al. (2018) investigated the intracellular water
transport phenomena for two different food materials: potato, as a low
porous material (Khan et al., 2017), and Granny Smith apple as a highly
porous food material.

Dried products are popular ingredients of convenient food and
usually require rehydration during their use. Rehydration is a complex
phenomenon, which includes at least two simultaneous processes:
water imbibition and swelling of biopolymers resulting in increasing of
dried material mass and volume, as well as leaching of solubles (sugars,
acids, minerals, vitamins) into surrounding water (Witrowa-Rajchert
and Lewicki, 2006). Drying technology and properties of dried material

significantly affect rehydration. Thus rehydration characteristics reflect
changes of raw material during drying (Lewicki, 1998).

The key issue of drying is the proper selection of process parameters
in order to obtain acceptable quality of the final product (Jokiniemi and
Ahokas, 2014). Therefore optimization of drying conditions is necessary
in order to preserve the best qualities of raw material. The majority of
optimization studies in food engineering refer to single-objective opti-
mization, using response-surface methodology (RSM) (Yazgi and
Degirmencioglu, 2007; Balasubramani et al., 2013; Rouissi et al., 2013).
RSM has been successfully adopted as an effective tool for optimization
of drying parameters. Multi-objective optimization (MOO) has been
rarely implemented in the food industry, probably due to mathematical
complexity (Abakarov et al., 2009). Only a few researchers proposed
multi-objective strategies for analyzing food processes such as drying
(Nazghelichi et al., 2011), thermal processing (Sendín et al., 2010),
bulk-grain handling (Thakur et al., 2010), baking (Hadiyanto et al.,
2009) or roasting (Goñi and Salvadori, 2012). One of the earliest stu-
dies of MOO for optimization of flow pattern in a multi-effect eva-
porator system was published by Nishitani and Kunugita (1979). An-
other interesting application of MOO for evaporator was described by
Sharma et al. (2012).

MOO is defined as finding a vector of decision variables satisfying
constraints to give acceptable values to all objective functions (Coello
and Christiansen, 2000). Mathematically, in MOO, a vector X∗=[x1∗,
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x2∗,…xn∗] should be found so as to optimize objective function F
(x)= [f1(x), f2(x),…, fn(x)]T subject to m inequality gi(x)≤ 0 (i=1 to
m) and p equality constraints hj(x)= 0 (j=1 to p) where X∗ ∈ Rn is
decision vector and F(x)∈ Rk is the vector of objective functions, both of
which must be minimized (Shojaeefard et al., 2013). To solve MOO
problems various optimization methods have been proposed which
generally use two different approaches. The conventional approach is to
combine two or more objectives into a single objective by weighted sum
method (desirability criteria) or to reduce the problem to single-ob-
jective optimization by the conversion of other objectives into con-
straints. In case of desirability criteria the major concern is choosing
weight for each objective. Both methods result in a single solution ra-
ther than a set of solutions, which can be evaluated for each particular
drying scenario. For the sake of flexibility in the decision-making, a set
of solutions considering the multiple objectives, would be preferable
(Udayakumar et al., 2014). Usually MOO gives no single solution op-
timal with respect to all objectives, but rather a set of optimal solutions
known as Pareto optimal solution. Pareto optimal solution is one, which
is not dominated by any other solution in the solution space, where
improvement of one objective requires a certain sacrifice of other(s)
(Censor, 1977). A set of all these non-dominated solutions are called
Pareto optimal set, and their representation in the objectives space is
called Pareto front. The major goal in MOO is to find the Pareto front,
which consists of Pareto optimum solutions (Shojaeefard et al., 2013).

To define Pareto optimal set, the concept of dominant must be in-
troduced. Assuming that x1 and x2 are vectors in n-dimensional space
and f is a cost function, x1 dominates x2 if the following conditions are
satisfied:

< ⩽f x f x f x f x( ) ( ) and ( ) ( )1 1 1 2 2 1 2 2 (1)

or

< <f x f x f x f x( ) ( ) and ( ) ( )1 1 1 2 2 1 2 2 (2)

A solution is Pareto optimal if no other solution dominates it with
respect to the cost function. Once the set of solutions is found, it is easy
to select single optimal solution, particularly suitable for chosen drying
scenario.

Developing of Pareto optimal solutions usually requires preliminary
knowledge of cost functions, in our case relationships between drying
variables and quality parameters. Highly nonlinear nature of these re-
lationships could be managed by introducing of relational models, such
as artificial neural networks (ANN) (Gautam et al., 2006). This ap-
proach was successfully used for numerous drying applications (Farkas
et al., 2000; Erenturk et al., 2004; Aghbashlo et al., 2015), however it
has not been used for multi-objective optimization. Mohamed et al.
(2013) by performing a comparative analysis of RSM and ANN stated
that both methodologies complemented each other in interpreting the
results, whether in pointing out synergistic interactions among the
input variables via ANOVA, or in classifying the importance of each
component. Additionally, ANN is unrestricted to the order of the model,
and therefore, the approach is more dynamic in simulating the true
behavior of nonlinear dataset.

Genetic Algorithms (GA) is a powerful optimization tool especially
in irregular experimental regions. Several strategies based on genetic

algorithms have been developed for MOO, including weight-based GA
(Hajela et al., 1992), non-dominated sorting GA (Srinivas and Deb,
1994), distance–based Pareto GA (Osyczka and Kundu, 1995), random-
weighted GA (Murata, 1997), Pareto-archived evolution strategy
(Knowles and Corne, 2000) and elitist non-dominated sorting GA
(NSGA II) (Deb, 2001; Deb et al., 2002; Dedieu et al., 2003). One way to
find the Pareto front is to run a genetic algorithm for many different
combinations of the cost function weights. Each optimal solution is one
of the Pareto front. However, this approach requires too many runs to
estimate the Pareto set (Haupt and Haupt, 2004). The computational
efficiency of GA could be significantly improved by introducing ANN
relational models, establishing relationship between drying variables
and quality parameters. In this research we have chosen two drying
variables (air temperature and velocity) and three quality parameters of
apples (color, shrinkage and water absorption capacity).

The aim of the present work was to develop and verify novel ap-
proach to multi-objective optimization (MOO) based on ANN modelling
of product quality parameters and non-dominated sorting genetic al-
gorithm (NSGA II) to determine Pareto optimal set of drying conditions
required for quality drying of apple cubes. It is a novel approach to
multi-objective optimization. In literature to drying process optimizing
authors used only RSM (Erbay and Icier, 2009; Sturm et al., 2012;
Gupta et al., 2013; Aghilinategh et al., 2015).

To achieve this goal the four-steps approach was used: (1) collect
data from drying experiments, (2) apply ANN modelling to find func-
tional relationships between process variables (T, v) and quality char-
acteristics CD, VR and WAC of dried material, (3) use NSGA II to find
Pareto front and (4) apply constraints to find unique Pareto solution(s).

2. Materials and methods

2.1. Sample preparation

Fresh, high-quality apples (var. Ligol) were purchased from a local
store in Warsaw, Poland. Just before drying experiments apples were
peeled and the outer cortex was cut into cubes with thickness of
10 ± 1mm. The initial moisture content of fresh apple samples was
about 85% w.b. (5.66 d.b.).

2.2. Experimental procedures

The effect of drying temperature (T) and drying air velocity (v) on
quality parameters of apple cubes was evaluated. The following tech-
niques were used for drying of the raw material: natural convection
with v=0.01m s−1 (KWC-100, PREMED, Marki, Poland), forced con-
vection with v={0.5m s−1, 2 m s−1} (constructed in the Department
of Fundamental Engineering, Warsaw University of Life Sciences,
Warsaw, Poland) and fluidized bed drying with v=6m s−1 (con-
structed in the Department of Fundamental Engineering, Warsaw
University of Life Sciences, Warsaw, Poland) (Górnicki and Kaleta,
2007; Kaleta and Górnicki, 2010; Kaleta et al., 2013). Drying experi-
ments were carried out at 50, 60 and 70 °C in three replications until the
constant mass of dried material was reached. The equilibrium moisture
content of dried samples was about 9% w.b. (0.098 d.b.). Samples

Nomenclature

T drying temperature, °C
v drying air velocity, m s−1

M mass, g
V volume, m3

S dry matter content, %
L lightness in CIELab and CIELCh color space, –
C chroma in CIELCh color space, –

h hue angle in CIELCh color space, –

Subscripts

0 initial reference
d dried reference
r rehydrated reference
T tested reference
S standard reference
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