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A B S T R A C T

Early grapevine yield assessment provides information to viticulturists to help taking management decisions to
achieve the desired grape quality and yield amount. In previous works, image analysis has been explored to this
effect, but with systems performing either manually, on a single variety or close to harvest-time, when there are
few rectifiable agronomic aspects. This study presents a solution based on image analysis for the non-invasive
and in-field yield prediction in vines of several varieties, at phenological stages previous to veraison, around
100 days from harvest. To this end, an all-terrain vehicle (ATV) was modified with equipment to autonomously
capture images of 30 vine segments of five different varieties at night-time. The images were analysed with a
new image analysis algorithm based on mathematical morphology and pixel classification, which yielded overall
average Recall and Precision values of 0.8764 and 0.9582, respectively. Finally, a model was calibrated to
produce yield predictions from the number of detected berries in images with a Root-Mean-Square-Error per vine
of 0.16 kg. This accuracy makes the proposed methodology ideal for early yield prediction as a very helpful tool
for the grape and wine industry.

1. Introduction

Among all collectable data from a vineyard, grapevine yield esti-
mation outstands for its economical relevance (Wolpert and Vilas,
1992; Martin et al., 2002; Dunn, 2010), and also for being key to help
optimizing plant growth and to improve fruit quality (Dunn and Martin,
2003). Yield variability within a vineyard has been proved to be high
(Bramley and Hamilton, 2004). Classical yield estimation methods,
which consist on manual collection and weighting of the crop yield in a
given and limited number of plants previous to harvest is tedious and
insufficient to obtain representative yield data. Consequently, non-in-
vasive imaging-based methods are being investigated to make possible
the efficient and continuous capture of detailed information from vines
throughout their life cycle (Spalding and Miller, 2013; Li et al., 2014).

Grapevine yield is determined by the yield components, defined as
the number of clusters, the number of berries per cluster and the berry
weight (Tardaguila et al., 2012). Alternatively, yield can also be esti-
mated from the total number of berries and the berry weight (Nuske
et al., 2014). Whatever the case, the number of berries is the most labile
variable determining yield (Anderson et al., 2008). It is highly influ-
enced by the weather conditions during inflorescence development and
berry-set, when it gets fully established and remains mostly invariable
until harvest (May, 2004).

Imaging-based developments aimed at yield estimation can be
found in the literature under two differentiated approaches. A first set
of proposals is framed within the manual acquisition of images, thereby
focusing on the discrete analysis of samples from the vineyard.
Contrary, the second set studies yield estimation by means of on-the-go
image acquisition using modified human-driven, or autonomous ve-
hicles, with the ambition of making possible the continuous and mas-
sive analysis. Within the first approach, Chamelat et al. (2006) pre-
sented a method based on pixel classification to detect grape-pixel
aggregations in vine RGB images manually taken in the field under
daylight. Reis et al. (2011) also proposed the detection of grape-pixel
aggregations in outdoor RGB images that were taken using the camera
flash. They employed colour analysis and non-linear image processing
to detect aggregations of white-grape pixels. The method was later
improved and extended to work with red grapes also (Reis et al., 2012).
On the other hand, Rahman and Hellicar (2014) studied the detection
and classification of undeveloped and mature clusters of white grapes.
Their development consisted on the extraction of the clusters from the
background as a first step, to finally perform pixel classification by
means of texture analysis. Other approaches involved colour histogram
classification, RGB thresholding and fuzzy clustering to estimate cluster
weight in vine images (Liu et al., 2013). A more complex capturing
device was developed by Fernández et al. (2013), which consisted on a
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sensor rig composed of a CCD camera and a servo-controlled filter
wheel. This device was used to collect multispectral imagery, which
was analysed employing a sequential masking algorithm based on k-
means clustering. Aquino et al. (2017) proposed a methodology based
on mathematical morphology and false positives filtering by means of
supervised learning to count the number of berries in RGB cluster
images taken in the vineyard with a smartphone under natural sunlight.
Very recently, Mack et al. (2017) described a method based on 3D re-
construction of high-resolution laser range data to model sampled grape
clusters.

Regarding the methods for on-the-go vineyard monitoring, the lit-
erature is rather limited. Some works involved image acquisition after
veraison (Font et al., 2015; Rose et al., 2016), very close to harvest,
when the time window for cluster thinning, to either regulate the yield
or to promote increased allocation of carbohydrates to specific clusters
(to improve fruit ripening) is very limited. Font et al. (2015) equipped a
ground vehicle with a reflex camera and artificial lighting to capture
vine images of a single table grape variety (Flame seedless) at night-
time right before harvest and reported yield prediction errors of 16%.
More recently, a multi-view-stereo system coupled to a LED external
illumination system was mounted in an autonomous moving platform
(0.3 km/h), to acquire night-time images, and the estimation of the
number of berries in the cluster images was attempted (Rose et al.,
2016). The choice of earlier yield estimation, before veraison, was
taken by several authors. Likewise, Nuske et al. (2014) used a tractor,
which moved around 5 km/h, to mount RGB cameras and artificial il-
lumination for image capture in the vineyard at night time. They col-
lected data from six grapevine varieties in several growing seasons and
vineyards, at various timings before harvest, and developed a su-
pervised classifier for berry detection fed with a wide set of descriptors
(above 30) of texture, colour and shape. Average yield estimation ac-
curacy of 11% was only provided for Flame seedless, using images
acquired at harvest time (Nuske et al., 2014). A different approach was
followed by Liu et al. (2017), who developed a computer vision system
for early grape yield estimation based on shoot detection using videos
acquired with a low-cost camera at daytime using a white background
which moved alongside the row.

In view of the missing factors and lessons learned from previous
works, the goal of the present study was the development of a com-
prehensive technological solution for automated early grapevine yield
prediction based on images acquired on-the-go at a speed similar or
faster than most agricultural vehicles. In contrast to other available
tools focused mostly on yield estimation of a single variety at pre-har-
vest, this proposal analyses vine images of tens of clusters of five dif-
ferent grapevine varieties at earlier stages; concretely at phenological
stages between berry-set and cluster closure (around 100 and 120 days
before harvest) This earlier stage at which yield information is acquired
could significantly improve its impact, since grape-growers could per-
form viticultural practices to rectify certain key parameters more ef-
fectively. Additionally, a secondary goal of the present work was to
simplify the classifier for berry detection and counting and to evaluate
the potential development of a unique solution involving multiple
grapevine varieties.

2. Materials and methods

2.1. Experimental design

The trials were carried out during season 2015 in a commercial
vineyard located in Falces (lat. 42°27′46.0″N; long. 1°48′12.9″W;
Navarra, Spain). Five grapevine (Vitis vinifera L.) varieties (red and
white) were considered for this study: Albariño, Cabernet Sauvignon,
Syrah, Tempranillo and Viognier. The vines were planted in year 2009
on rootstock Richter 110 in N-S orientation, trained to vertical shoot
positioning (VSP) trellis system with 2 and 1m inter-row and intra-row
distances, respectively. Vines were defoliated from node one to six only

on their east side after berry set. Depending on the variety, at the time
of image acquisition in the field (23rd June 2015), the clusters were at
phenological stages between K and L, according to the scale proposed
by Baggiolini (1952). Following this scale, phenological stage K refers
to that at which berries have the 50% of their final size; it is also de-
noted as pea-size stage. With regard to phenological stage L, also called
cluster closure, it is reached when berries have about 70% of their final
size, and they start to touch each other within the cluster.

2.2. Acquisition of reference data

For every cultivar, ten consecutive sampling segments composed of
three adjacent vines each, were labelled and delimited

× ×varieties segments vines(5 10 3 ); thirteen additional segments of
non-defoliated vines were also selected. Each three-vine segment con-
stituted a unique sampling point in which the produced yield was in-
dividually weighted and registered at the end of the season using a
hanging scale (Kern CH15K20, Kern & Sohn GmbH, Balingen,
Germany).

2.3. Image acquisition

The vine segments were photographed ‘on-the-go’ at night time
without user intervention. To this effect, a sensor-equipped all-terrain
vehicle (ATV) was driven through the vineyard at 7 km/h. Image cap-
ture automation was achieved by adapting the vehicle to incorporate
the following elements:

– A mirror-less RGB camera (Sony α7II, Sony, Tokyo, Japan) equipped
with a Zeiss 24/70mm lens with optical stabilisation. This camera
mounts a 24 Mpx CCD sensor, incorporates a 5-axis image stabili-
sation system and provides high shutter speed, quick image storage
and low noise generation (Fig. 1(a)). These features allowed to
capture and store on-the-go three images per wheel-spin at 7 km/h,
producing high quality images despite the vibrations caused by the
ATV’s engine and the irregular ground’s surface. For the experi-
ments, the camera was set in manual mode, configuring the aperture
in f/4, shutter speed in 1/2500 s, ISO sensitivity in 5000 and focus
in manual mode.

– A white-light LED panel (Fig. 1(a)) to provide controlled artificial
illumination for vineyard monitoring at night time. By means of il-
lumination and camera parametrization, it was possible to isolate in
the image the vines under evaluation from those in the adjacent
row. Should image acquisition be conducted at day time, the sun-
light would equally illuminate the whole scene, producing images in
which the vines under study were hardly distinguishable from those
at their back (this fact is illustrated in Fig. 2).

– A modular and flexible structure built with commercial aluminium
profiles for sensor attachment. The structure consisted on an upfront
and a rear tray, plus an adjustable arm to be installed in the front
tray (Fig. 1(a)). The arm was designed to mount the camera and
illumination system, making the combination adjustable to different
vineyard heights and widths. The arm was adjusted for the camera
to be at around 1.5m from the canopy.

– An inductive sensor installed in the rear axle for camera triggering;
the sensor produced three activation pulses per wheel-spin
(Fig. 1(b)).

– A GPS receiver (Leica Zeno 10 Global Positioning System; Heerbrug,
St. Gallen, Switzerland) for image georeferencing (Fig. 1(c)).

– A custom-built electronic control system for managing the signals
generated by the installed devices (GPS and inductive sensor) and
triggering the camera using an isolated signal (Fig. 1(d)). The
system also allowed for data storage in an SD-card and for showing
capture-status information in a 4.9″ TFT screen.

A. Aquino et al. Computers and Electronics in Agriculture 144 (2018) 26–36

27



Download English Version:

https://daneshyari.com/en/article/6539837

Download Persian Version:

https://daneshyari.com/article/6539837

Daneshyari.com

https://daneshyari.com/en/article/6539837
https://daneshyari.com/article/6539837
https://daneshyari.com

