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A B S T R A C T

The variability of soil properties plays a critical role in soil and water conversation engineering. In this study,
different machine learning techniques were applied to identify the soil texture classes based on a set of terrain
parameters in a small mountainous watershed located in the core areas of Three Gorges of Yangtze River,
southwest China. For this, the support vector machines (SVMs) with polynomial and Gaussian radius basis
functions, artificial neural network, and classification tree methods were compared. The most commonly used
performance measures including overall accuracy, kappa index, receiver operating characteristics (ROC), and
area under the ROC curve (AUC) were employed to evaluate the accuracy of the models for classification. The
observed results showed a better performance under SVMs than under artificial neural network and classification
tree algorithms. Moreover, SVM with polynomial function (SVM-poly) worked slightly better than SVM with
Gaussian radius basis function. The overall accuracy, kappa statistic, and AUC of SVM-poly were 0.943, 0.79,
and 0.944, respectively. Meanwhile, the classification accuracy was 0.794 for clay, 0.992 for loam, and 0.661 for
sand under SVM-poly. Elevation, terrain classification index for lowlands, and flow path length were the most
important terrain indicators affecting the variation in the soil texture class in the study area. These results
showed that the support vector machines are feasible and reliable in the identification of soil texture classes.

1. Introduction

Soil properties play critical roles and thus have influence in agri-
cultural engineering, such as in soil improvement, land consolidation,
management of drainage, soil erosion and irrigation. Knowledge on the
variations in the soil properties could provide valuable information to
design a more rational use and management plan especially in the
cultivated areas. Climate, biota, and geological history are the critical
factors affecting the chemical and physical properties of soil at larger
scales (e.g., regional and continental scales), while human activities and
topography may be the dominant factors controlling the properties of
soil at smaller scales. Topography has significant impacts on runoff,
drainage, and soil erosion and hence on the soil development (Jenny,
1941; Moore et al., 1991, 1993). The relationship between chemical
and physical properties of soil and terrain indicators has been in-
vestigated intensively (Malo et al., 1974; Moore et al., 1993; Govers
et al., 1996; Thompson et al., 2006; Wilcke et al., 2008; Wu et al., 2008;
Leiß et al., 2012; Guo et al., 2013; Zhang et al., 2014). For example,
Malo et al. (1974) found that soil clay, surface thickness, or organic C
increased from shoulder position to foot slope along a hill slope. In

southern Ecuadorian Andes, the sand/clay ratio of surface horizon in-
creased with the increase of elevation and slope (Ließ et al., 2012). In
southwestern China, tillage controlled the redistribution of soil particles
of sloping terrace with embankment on a hill slope (Zhang et al., 2014).

Classical statistical methods have been applied to explore the re-
lationship between terrain parameters and the chemical and physical
properties of soil (Moore et al., 1993; Gessler et al., 2000; Gobin et al.,
2001; Wilcke et al., 2008; Wu et al., 2008; Guo et al., 2011). Recently,
several machine learning methods such as artificial neural networks,
decision trees, and support vector machines have been proposed as
alternative techniques for soil mapping (Zhao et al., 2009; Kovačević
et al., 2010; Ehret, 2010; Guo et al., 2013; Leiß et al., 2012; Brungard
et al., 2015; Taghizadeh-Mehrjardi et al., 2015, 2016; Zádorová et al.,
2015; Heung et al., 2016). Much of the above focused on the classifi-
cation of soil and the outcome of these investigations demonstrated that
the performance of models varied under diverse circumstances (Ehret,
2010; Kovačević et al., 2010; Brungard et al., 2015; Taghizadeh-
Mehrjardi et al., 2015; Heung et al., 2016). For example, using the
ground penetrating radar data to classify rock layers, Ehret (2010)
compared the differences between artificial neural networks and
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support vector machines (SVMs). The results showed that the multi-
class SVM presented better pattern recognition. In addition,
Taghizadeh-Mehrjardi et al. (2015) compared six data mining classi-
fiers, namely, logistic regression, artificial neural network, support
vector machine, k-nearest neighbor, random forest, and decision tree
model, to predict the spatial distribution of soil groups in Iran. They
found that both the decision tree model and artificial neural network
produced a higher accuracy and kappa index than others. Brungard
et al. (2015) evaluated 11 machine learning classifiers for mapping the
soil taxonomic classes in semi-arid areas and reported that the random
forests using covariates selected via recursive feature elimination were
consistently the most accurate or performed best. In digital soil map-
ping, for classification purposes, Heung et al. (2016) compared a
variety of machine learners and found that the model choice and
sample design greatly influenced the outputs.

Soil texture is an important physical property of soil which plays a
key role in soil processes including water retention and soil fertility.
Studies have demonstrated that the variations in the soil texture are
closely related to topography (Gobin et al., 2001; Brown et al., 2004;
Wilcke et al., 2008; Zhao et al., 2009; Leiß et al., 2012). For instance,
Gobin et al. (2001) used stepwise multiple linear regression to predict
the soil texture at the surface horizon based on terrain attributes over a
catchment in southeastern Nigeria. They found that the smaller particle
sizes (clay and silt) correlated well with the slope gradient and com-
pound topographic index, whereas larger particle fractions correlated
better with contributing area and stream power index. In the southern
Ecuadorian Andes, Ließ et al. (2012) reported that the elevation was
the most important variable controlling the soil texture of surface
horizon based on the random forest method. Zhao et al. (2009) applied
an artificial neural network to predict the soil texture over a watershed
in Canada, based on a set of hydrographical parameters that were de-
rived from a digital elevation model.

In this context, the objective of the current study is to evaluate the
ability of the support vector machines, artificial neural networks, and
decision tree classifiers for identifying the soil texture class based on
terrain parameters. The relative importance of terrain parameters is
then investigated by the best model. The observed results from this
investigation provide useful information for mapping the categorical
properties of soil such as soil type and soil texture.

2. Materials and methods

2.1. Study site

This study was conducted in a small watershed located in the core
area of Three Gorges of the Yangtze River, southwest China (Fig. 1)
having a moderate sub-tropical climate with a mean annual precipita-
tion of 1224mm and a mean temperature of 15 °C. The average annual
sunlight is about 1477 h and the relative humidity is about 75%. The
topography of the study region is mountains, where the elevation
ranges from 238 to 1631m and the major land is slope fields with the
slopes between 0 and 63°. The annual crop rotation is rape (Brassica
napus L.), corn (Zea mays L.) or sweet potato (Ipomoea batatas L.).

The parent materials of soil were developed from two soil strata
(Xujiahe and Daye formations, Gong, 1999). These two formations were
deposited during the late Triassic period and in the early Triassic
period, respectively. The Xujiahe formation is composed of numerous
types of rock, including glutenite, fine sandstone, siltstone, etc. The
Daye formation is dominated by alternating mudstone, marls and
thinly-bedded limestone. According to FAO soil classification, soils are
classified as Regosols (when developed from Xujiahe formation) and
Entisol (when developed from Daye formation) (FAO, 1988). In the
plough layer, most of the field soils are loamy, clayey and sandy. Soil
pH varies from 5.3 to 8.6 and the soil organic matter ranges from 6.3 to
26 g/kg.

2.2. Soil texture class

In September 2012, a total of 1032 soil samples at a depth of 20 cm
were collected from the cultivated soils of slope fields. Ten sub-samples
were randomly collected from each field and mixed as a composite
sample. Soil texture class was estimated by twisting the composite
sample between fingers according to the flowchart (Thien, 1979;
Table 25 in FAO (2006)). This approach is referred as “texture-by-feel”
or “Fingerprobe” (Sponagel et al., 2005), which is considered to be a
suitable alternative to the laboratory measurement of soil texture which
is generally time consuming and is not cost-effective (Foss et al., 1975;
Post et al., 1986; Pachepsky et al., 2006; Vos et al., 2016). Soil texture
could be divided into general or broad classes (3 or 4) or very fine
classes (13 or 20). In practice, it is convenient to indicate the general
classes (USA, soil survey manual, P110). For example, sand, loam, clay,
and silt are given in FAO (2006), Fig. 4). The current work employs the
general classes of soil texture. The following field criteria for estimating
the soil texture were applied to fit the soils of the area (FAO, 2006,
Table 25).

Sand: not possible to roll a wire of about 7mm in diameter.
Loam: possible to roll a wire of about 3–7mm in diameter, but

breaks when trying to form the wire to a ring of about 2–3 cm in dia-
meter, moderately cohesive, adheres to the fingers.

Clay: possible to roll a wire of about 3mm in diameter and to form
the wire to a ring of about 2–3 cm in diameter, cohesive, sticky, gnashes
between teeth, and has a moderately shiny to completely shiny surface
after squeezing between fingers.

In order to assess the estimates of field-based texture class, the
particle sizes of 43 samples were analyzed using a pipet method. The
corresponding soil texture classes were identified by using a soil texture
calculator (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/
survey/?cid= nrcs142p2_054167). The overall accuracy and kappa
index of general classes measured by the experienced soil scientists in
the field and by the lab analyses were 76.7% and 0.604, respectively.
Hence, the data were suitable for further analysis.

The total numbers of clay, loam, and sand soil samples for the two
formations were 63, 854, and 115, respectively. The numbers of clay,
loam, and sand soil samples were 11, 445, and 39 for the Xujiahe for-
mation and 52, 409, and 76 for the Daye formation, respectively.
Obviously, most of the samples with clay texture were collected from
the Daye formation.

2.3. Terrain parameter

Topography plays a critical role in influencing the variations of the
soil properties and a number of terrain indicators could be derived from
digital elevation models (DEMs) (Moore et al., 1993; Florinsky et al.,
2002). For instance, the variations of soil properties in the surface layer
are either positively or negatively related to terrain indicators
(Florinsky et al., 2002; Wu et al., 2008; Tajik et al., 2012; Mehnatkesh
et al., 2013). Compared to the labor intensive as well as cost intensive
measurements of soil properties, topographical data are easily obtained.
However, some of the terrain indicators are highly correlated which
may not precisely estimate the partial regression coefficient and also
the relative importance of independent variables (Montgomery et al.,
2001). Fortunately, the multicollinearity could be detected by the
variance inflation factor (VIF), which can be calculated as follows
(Marquardt, 1970),

=
−

VIF
R

1
1i

i
2 (1)

where, Ri
2 is the coefficient of determination of a regression of the ith

independent variable on all of the other independent variables. The
independent variables with VIFs that are less than or equal to 5 can be
kept in the model (Montgomery et al., 2001).

In this study, forty-five terrain indicators were calculated by the
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